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Abstract. We study a two-dimensional binary mixture of active and passive colloids as an idealized model
of an hybrid aggregate of living cells and inert particles. We perform molecular dynamics simulations of this
system using two different thermostats, and we systematically investigate the effect of varying these two
effective temperatures on the system behavior, as characterized by its density, structure and thermoelastic
properties. Our results indicate that the presence of active colloids shifts the mixture towards the liquid
state and renders it more deformable. Such system softening and melting effects due to the addition of
active particles are larger than expected from a linear combination of temperatures of the active and pas-
sive components. This heightened effect becomes more pronounced as the effective temperature difference
between the two components becomes larger. The binary mixture remains homogeneous for moderate col-
loidal activity, but segregation arises for large effective temperature difference. Our results provide insights
to guide future experimental hybrid aggregate studies with promising biomedical applications.

1 Introduction

Active colloids, a type of active matter, are particles that
harvest energy from their environment or from an internal
reservoir and transfer it to their surroundings, thus keep-
ing the system out of equilibrium [1]. This energy flux
fuels colloidal activities such as self-motility. The most
widely studied type of active colloids are particles with
active directional propulsion, where the swimming direc-
tion is randomized by rotational diffusion (the so-called
Active Brownian Particles) or by tumbling events (Run-
and-Tumble Particles) [2]. These models were originally
developed to represent bacterial swimming, and they can
also be applied to other realms of active matter, such
as molecular motors [3] or synthetic Janus colloids [4].
A less studied type of active colloids are those whose
self-motility is enhanced diffusion rather than directional
propulsion, such as vibrated granular media [5] and chro-
matine [6]. The two types of active motility, directional or
non-directional, have respectively been termed as “vecto-
rial” or “scalar” activity [7]. In this article we study scalar
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active colloids. This choice is motivated by the study of
non-directional motion of cells in a tissue, which can in
certain cases be described as a zero-mean Brownian mo-
tion [8,9], and which has been modeled as non-directional
active motion in earlier computer simulations [10–13].

Important insights into the physics of tissues have been
provided by cellular aggregates, a laboratory model to
study developing tissues and tumors [14] and an exam-
ple of so-called entangled active matter [15]. Recent ex-
perimental work has investigated hybrid cellular aggre-
gates, formed by a mixture of inert particles and active
cells [16,17]. These studies have opened new prospects for
nanoparticle-based cancer therapies, where particles could
modify the tumor’s material properties by increasing its
cohesivity and reducing its deformability, thus constrain-
ing tumor spreading. Crucial to this application is to un-
derstand how the material properties of a hybrid aggregate
are modulated by its composition, and whether particles
and cells can mix rather than segregate. These questions
lead us to investigate the fundamental physics of phase
transition, order, and thermomechanical properties of a
mixture of active and passive colloids.

In this paper, we consider an idealized two-dimensional
mixture of scalar active and passive colloids of identi-
cal size and interacting through Lennard-Jones poten-
tials, which we investigate by molecular dynamics sim-
ulations. To model colloidal activity, we use the concept
of an effective temperature [7,18], which describes the en-
ergy harvesting by active colloids and its dissipation to
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produce non-directional motion. The definition of an ef-
fective temperature in vectorial active colloids has spurred
much controversy, leading to the conclusion that this con-
cept can only be consistently defined in specific systems [2,
19]. Defining an effective temperature in scalar active col-
loids, as studied here, is simpler, as this effective temper-
ature can be simply regarded as an enhanced diffusivity
of the active component [20,21].

Here we study the role of activity in the solid-liquid
phase transition, in the thermomechanical properties of
the mixture, and in the emergence of segregation between
active and passive components. Characterizing the solid-
liquid transition is important to understand how the intro-
duction of inert particles can rigidify a cellular aggregate.
Previous studies investigated crystallization of a single-
component suspension of self-propelled particles [22] or of
self-propelled hard disks [23,24], as well as the role of ac-
tivity in promoting crystallization in a mixture of active
and passive hard spheres [25,26]. Here we focus on study-
ing how colloidal activity modifies the average tempera-
ture at melting. Moreover, we characterize the dependence
of the system’s thermomechanical properties, i.e. the shear
modulus and the bulk modulus, on the effective temper-
ature of the components. We also investigate segregation
induced by differential activity. Activity-induced segrega-
tion has been extensively studied for vectorial active mat-
ter, either by directly including a self-propulsion term in
the equations of motion [19,27,28] or by deriving an ef-
fective many-body interaction potential [29]. Segregation
in scalar active matter has received comparatively less at-
tention so far, although segregation mechanisms have also
been identified. These are based on activity-induced short-
range [7,20] and long-range [21] particle attraction.

In the following, we first describe our model and sim-
ulation technique. Then we present our results on solid-
liquid phase transition, thermomechanical properties, and
segregation between the active and passive components.
We conclude by summarizing our main findings and high-
lighting their biophysical implications.

2 Model and simulation technique

2.1 Model

We study a two-dimensional Lennard-Jones binary mix-
ture, representing an active and a passive species. In the
absence of directional motility, as considered here, a bi-
ologically active species is characterized by shape fluc-
tuations leading to enhanced non-directional motion. We
model such activity by defining two different effective tem-
peratures, T1 > T2. The temperature difference is denoted
by ΔT = T1 − T2. The effective temperature of species
i, Ti, is related to its measurable kinetic energy, Ek,i, by
〈Ek,i〉 = kBTi, where the angle brackets denote statistical
average, kB is the Boltzmann constant and i = 1, 2. Tem-
perature uniformity is prevented by a continuous input of
energy, which in the biological system is provided by the
metabolic activity. We model this energy flux by consider-

ing that our two species are in contact with two different
thermostats.

We perform molecular dynamics simulations on a sys-
tem consisting of N = 1250 particles interacting through
a shifted and truncated Lennard-Jones potential:

φij(r) =

⎧

⎪

⎨

⎪

⎩

4ǫij

[
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r

)12

−
(σ

r

)6
]

− u0, if r ≤ rc,

0, if r > rc,

(1)

where rc = 2.5σ is the cut-off distance and u0 =
−0.0163 ǫij is the shift of the potential at the cutoff. All
particles are assumed to have the same mass m and size,
the latter represented by a constant σ. ǫij is the depth of
the potential well for interactions between species i and j.
We consider the case where ǫ11 = ǫ22, and we will study
different values of ǫ12.

The evolution of the position xi of particle i is de-
scribed by the Langevin equation

mẍi = −∇iU − ζẋi + ηi(t), (2)

where ζ is the particle’s drag coefficient, ∇iU is the
gradient of the global potential energy U with respect
to xi, and ηi(t) is a Gaussian random force indepen-
dent for all particles, with zero mean and with variance
〈ηi(t) · ηi(t

′)〉 = 2kBTζδ(t′ − t).
In the following, we use reduced Lennard-Jones units

based on m, σ, ǫ11 and ǫ11/kB as units of mass, length, en-
ergy and temperature, respectively. The relative fraction
of species i in the mixture is xi = Ni/N , where Ni is the
number of particles, and x1 + x2 = 1. A two-dimensional,
rectangular box with periodic boundary conditions and
dimensions Ly =

√
3Lx is used in order to be compati-

ble with the triangular crystal phase of the monodisperse
Lennard-Jones model. We define the simulation box size
by the surface S = LxLy (denoting a two-dimensional
“volume”). The average isotropic pressure is kept constant
at P = 2, since this value allows comparing to results from
previous studies [30,31].

2.2 Simulation aspects

We perform molecular dynamics (MD) simulations using
the LAMMPS code [32]. The temperature of each species
is set using the Langevin thermostat provided by this com-
puter program. The Langevin thermostat is controlled by
its characteristic damping time tdamp = m/ζ, which is
inversely proportional to the solvent viscosity. In our sim-
ulations we set tdamp = 0.01 Lennard-Jones time units.
Simulations run with different values of the tdamp param-
eter showed that such a low value is required so that the
temperatures of the two species are kept within 2.5% of
their desired values, whereas larger values of the tdamp

parameter led to temperature uniformity between the two
species. Because the required value of tdamp is small com-
pared to the Lennard-Jones unit time, particle diffusion
coefficients are also small, and this requires longer simu-
lation times in order for the system to reach its steady
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Table 1. Summary of the simulation parameters. Boldface val-
ues are kept constant throughout this study. Lightface values
define our reference conditions but change for different cases.
Values are expressed in Lennard-Jones units, with m, σ, ǫ11
and ǫ11/kB as units of mass, length, energy and temperature,
respectively.

Symbol Meaning Value

N Number of particles 1250

x1 Fraction of particles of type 1 0.5

ǫ12 Potential interaction between 1 and 2 1

ǫ22 Potential interaction of species 2 1

rcut Potential cut-off distance 2.5

P Pressure 2

T ∗ Average temperature of all particles variable

ΔT Temperature difference, T1 − T2 variable

tdamp Langevin thermostat damping time 0.01

dt Simulation time step 2.5 · 10−3

state. This state, also referred to as “equilibrium” state in
the paper, does not imply thermal equilibrium (same tem-
perature) between the two species. Indeed, if ΔT > 0, a
constant energy flux is added by the thermostat to the hot
particles and removed from the cold particles (see Elec-
tronic Supplementary Material (ESM) for more details).

Table 1 summarizes the simulation parameters. Each
simulation series is defined by a set of parameter val-
ues ΔT , x1, ǫ12. For each series, we study different cases
by gradually increasing the average system temperature,
T ∗ = x1T1 + x2T2, while fixing the pressure P = 2. The
initial particle configuration for the first case in each se-
ries is a triangular array of particles with random initial
velocities. The initial spots within the array of particles
of types 1 and 2 are chosen at random to produce an
initial configuration that respects the prescribed value of
x1. The temperature T ∗ of the initial case is sufficiently
low so that the system is at a solid state. For the follow-
ing cases in the series, each having a higher temperature
than the previous one, the initial particle configuration is
taken as the final configuration of the previous case. All
simulations are performed with a MD integration time
step dt = 0.0025. Results for each T ∗ are obtained after
four stages. Stage one consists in using the isoenthalpic-
isobaric ensemble NPH with a Nose-Hoover barostat cou-
pled with a Langevin thermostat (NPH-L). The system is
heated at a rate dT/dt = 10−5 until the desired tempera-
ture is reached. Then, as stage two, it is stabilized for an
additional 7 · 106 time steps. The simulation is then con-
tinued using the micro-canonical ensemble NVE coupled
with a Langevin thermostat (NVE-L), and with the vol-
ume fixed at the equilibrium value reached in the NPH-L
simulation (stage 3). The system is let to equilibrate for
3 · 106 time steps. Finally, as stage 4, results are obtained
by averaging the statistics over an additional 8 · 106 time
steps. We verify that the pressure at this final stage fluc-
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Fig. 1. Snapshots of the system at steady state for x1 = 0.5,
ǫ12 = 1, ΔT = 0.6, and (a) T ∗ = 0.5 (T1 = 0.8, T2 = 0.2) or
(b) T ∗ = 0.7 (T1 = 1.0, T2 = 0.5). The hotter species (1) is
represented in red and the colder species (2) in blue.

tuates around a mean value of P = 2 and with a standard
deviation of about 5%. The number of simulation steps
was chosen by performing a convergence analysis of the
thermomechanical characteristics of the mixture. In order
to improve the accuracy of the results, each simulation
series is repeated 8 independent times, each time using
different initial velocities and different seeds for the ran-
dom number generators. We report the average values and
standard deviations over the 8 MD runs.

2.3 Computation of thermomechanical properties

We characterize the macroscopic mechanical behavior of
our system by computing the shear modulus G and the
bulk modulus K, whose macroscopic definitions are G =
δτ/δγxy, the ratio between the average shear stress and a
small shear strain, and K = ρ(∂P/∂ρ)T , with ρ = N/S
the particle density. These parameters have been used to
experimentally characterize the mechanical response of
active, living tissues [33]. To compute these properties,
we impose six different types of deformation of the sim-
ulation box, in order to induce a strain ǫxx = ±0.01 or
ǫyy = ±0.01 or ǫxy = γxy/2 = ±0.01. After system equi-
libration, we evaluate the terms of the stress tensor and
deduce the parameters G and K. The final values are ob-
tained by averaging over 8 independent simulations. The
value of the imposed strain was chosen from numerical
tests that showed moduli results to become independent
of the value of ǫ for ǫ ≥ 0.01.

3 Results and discussion

To illustrate the nature of our simulations, fig. 1 shows
snapshots of “equilibrated” (steady-state) systems with
x1 = 0.5, ǫ12 = 1, ΔT = 0.6. Species 1, represented by red
disks, are the hotter or active particles, and species 2, rep-
resented by blue disks, are the colder or passive particles.
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Fig. 2. Density ρ as a function of the average temperature
T ∗ for x1 = 0.5, ǫ12 = 1, and ΔT = 0 (red circles), 0.4 (blue
squares), and 0.6 (green triangles). Error bars are standard
deviations over 8 independent MD runs.

The two species are mixed without marked segregation.
The hotter particles appear to be slightly more disordered
than the colder particles, as will later be confirmed by
comparison of their respective partial radial distribution
functions. Plot (a) corresponds to T ∗ = 0.5, where the
system is at the solid state and the particles are sensibly
more ordered than in plot (b), corresponding to T ∗ = 0.7,
above the solid-liquid phase transition temperature.

3.1 Shift of the liquid-solid phase transition due to
colloidal activity

Figure 2 shows the evolution of density ρ = N/S as a func-
tion of the average temperature T ∗ for different values of
the temperature difference between the two species, ΔT .
The solid-to-liquid phase transition is identified by the dis-
continuous density drop at the melting temperature. For
a one-component Lennard-Jones system, or equivalently
for a mixture of two identical species at the same tem-
perature (ΔT = 0), melting occurs at about Tm ≈ 0.63.
As ΔT is increased, the transition temperature shifts to
smaller and smaller values, with Tm ≈ 0.61 for ΔT = 0.6.
Moreover, the transition becomes more gradual, with less
steep and smaller density drop. This striking result indi-
cates that, near the melting temperature, a mixture of ac-
tive and passive colloids can behave as a liquid, whereas
a one-component system at the same average tempera-
ture behaves as a solid. This key result of our work is
not specific to our characterization of the system by its
average temperature T ∗. A similar conclusion is reached
if an “equivalent temperature” in the liquid phase is de-
fined based on mean-square particle displacements (see
ESM). From fig. 2, one can also observe that for T ∗ in
the liquid range, at a given T ∗, the density of the liquid
increases (slightly) with ΔT . This shows a distinct effect
of the colder species.

To characterize the state of the binary mixture at dif-
ferent temperatures, we investigated the mean square dis-

placement (MSD) and the radial distribution functions
(RDFs) of the two particle populations. Figure 3 shows the
results for a mixture with ΔT = 0.6 and either T ∗ = 0.55
(left) or T ∗ = 0.65 (right). As the phase transition temper-
ature is around 0.61, these two cases correspond respec-
tively to a solid and a liquid close to the transition. For the
solid at T ∗ = 0.55, the MSD (fig. 3(a)) is very small and
does not significantly evolve over time. Agitation of the
hot particles is slightly larger than that of the cold par-
ticles. The RDF (fig. 3(c)) indicates a hot crystal, with
peaks corresponding to the coordination layers in a crys-
talline triangular lattice. We represent the total RDF gall

as well as g11 (hot particles), g22 (cold particles), and g12.
All four functions display features of a hot crystal. These
functions are quite close to one another, with neverthe-
less the cold particles exhibiting a more ordered structure
than the hot particles. We have also compared gall with
the radial distribution function of a one-component sys-
tem at T = T ∗ = 0.55 and found that both functions
are virtually identical (see inset). The MSD at T ∗ = 0.65
(fig. 3(b)) increases linearly over time, as characteristic of
diffusion in a liquid. The overall MSD is virtually identi-
cal to that of a one-component system at T = T ∗ = 0.65.
When we consider the two species separately, we observe
that the MSD of the hot particles (T1 = 0.95, red solid
line) is larger than the overall MSD (black solid line),
which in turn is larger than the MSD of the cold particles
(T2 = 0.35, blue solid line). We have also compared the
MSD for each species in the mixture with that of a one-
component system at the species temperature. Thus, we
recall that the solid red line corresponds to the hot species
(T1 = 0.95) in the binary mixture. This is to be compared
to the dotted red line, corresponding to a one-component
system at T = 0.95 and the same pressure as the mixture
(P = 2). We also consider a one-component system at
T = 0.95 at a volume fixed at that of the mixture, which
is smaller than that of the hot species alone. By compar-
ing the three curves, we conclude that the MSD of the hot
species is reduced when they are in the mixture, partly
because of the smaller volume of the mixture (dotted red
line to dashed red line), and partly because of interactions
with the cold species (dashed red line to solid red line). A
similar discussion is valid for the cold species. Although in
this case the volume effect is negligible, interactions with
the hot species clearly lift the slope of the MSD of the
cold particles in the mixture, from solid-like to liquid-like.
The RDFs for T ∗ = 0.65 are shown in fig. 3(d). At short
distances, they show some structure, more than in a typ-
ical hot simple liquid [34]. As they all oscillate around 1
at long distances, the system is certainly in a disordered
state. Combined with the MSD information of fig. 3(b),
these RDFs represent indeed a liquid state. We notice a
significant difference between g11 and g22, indicating that
the cold particles retain more order. Overall, this analysis
shows that the binary system of active and passive par-
ticles has an average behavior corresponding to that of a
one-component system at the average temperature. How-
ever, the behaviors of active and passive particles differ
when the two species are considered separately.
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Fig. 3. Characterization of binary mixtures with x1 = 0.5 and ǫ12 = 1. (a) Mean square displacement (MSD) for a mixture
with T ∗ = 0.55 and ΔT = 0.6 for all particles (black line), for the hot particles at T1 = 0.85 (red line, lighter), and for the cold
particles at T2 = 0.25 (blue line, lightest). (b) MSD for a mixture with T ∗ = 0.65 and ΔT = 0.6 for all particles (solid black
line), for the hot particles at T1 = 0.95 (solid red line, lighter), and for the cold particles at T2 = 0.35 (solid blue line, lightest).
The results are compared to a one-component system at T = 0.65 and the same density as the mixture (green crosses), to a
one-component system at T = 0.95 and having either the mixture’s density (dashed red line) or the density corresponding to
P = 2 (dotted red line), and to a one-component system at T = 0.35 and either the mixture’s density (dashed blue line) or the
density corresponding to P = 2 (blue circles, superimposed to the horizontal axis). (c) Radial distribution function (RDF) for
a mixture with T ∗ = 0.55 and ΔT = 0.6 for all particles (thick solid black line) and partial RDFs g11 (dotted red line), g22

(dash-dotted blue line), g12 (thin solid green line). The inset compares the total RDF of the mixture (solid black line) with the
RDF of a one-component system at T = 0.55 and the same density as the mixture (dashed magenta line). The vertical gray
lines indicate the theoretical peak positions in a perfect crystal. (d) RDFs for a mixture with T ∗ = 0.65 and ΔT = 0.6. The
color code is the same as in plot c.

3.2 Modulation of thermomechanical properties by
colloidal activity

Next we investigate the thermomechanical properties of
the binary mixture. Figure 4 shows the evolution of the
shear modulus, G, and the bulk modulus, K, as a func-
tion of the average temperature, T ∗, for different values of
the temperature difference between the two species, ΔT .
The results are consistent with the shift in phase transi-
tion with increasing ΔT , shown in fig. 2 above. The study
of the elastic moduli confirms that the phase transition
is shifted to smaller temperatures with increasing ΔT .
Moreover, we observe that, for a given average temper-
ature T ∗ in the vicinity of the phase transition, the elastic
moduli become smaller with increasing ΔT . We thus con-
clude that increasing the effective temperature difference
between the active and passive components fluidifies the
system (because the melting temperature decreases) and
renders it more deformable (because the elastic moduli
decrease). Quantitatively, we observe that both G and K
show strong signatures of the melting transition. Further-
more, they indicate the same transition temperature as the

density criterion (cf. fig. 2). This shows the consistency of
our results. We also verify that, as expected, the shear
modulus in the liquid vanishes for all ΔT . We have also
investigated the possibility of computing thermomechan-
ical properties using the stress fluctuation formalism [35,
36] based on the average temperature of the system. This
alternative approach is efficient and exact for ΔT = 0,
whereas it provides an approximate result for ΔT > 0
(see discussion and fig. S2 in the ESM).

3.3 Effects of mixture composition and of interspecies
interaction

Previous results correspond to an equimolar mixture
(x1 = x2 = 0.5) with uniform particle interactions (ǫ11 =
ǫ22 = ǫ12 = 1). In this section we investigate the effects of
changing the composition (x1) or the interspecies interac-
tion (ǫ12).

Figure 5 shows the effect of changing x1 on the phase
transition, identified by the rapid changes in ρ and in
G as a function of the average temperature T ∗. Here,
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Fig. 4. Characterization of thermomechanical properties of bi-
nary mixtures with x1 = 0.5 and ǫ12 = 1. (a) Shear modulus G
and (b) bulk modulus K as a function of the average tempera-
ture T ∗ for ΔT = 0 (red circles), ΔT = 0.4 (blue squares), and
ΔT = 0.6 (green triangles). Error bars are standard deviations
over 8 independent MD runs.

a mixture with ΔT = 0.6 is studied. We recall that in-
creasing ΔT shifts the transition to a lower melting tem-
perature. This effect is maximum for an equimolar mix-
ture (x1 = 0.5), and it is attenuated when one of the
two species is dominant. Indeed, when x1 = 0 or x1 = 1
we retrieve a one-component system, and the result is the
same as for the one-component system considered in figs. 2
and 4 (x1 = 0.5 and ΔT = 0). The corresponding results
obtained by application of the stress fluctuation formalism
based on the average temperature are presented in fig. S3
of the ESM.

Figure 6 illustrates the effect of varying the interpar-
ticle energy parameter ǫ12, which we refer to as the “in-
terparticle affinity” parameter. The corresponding results
obtained by application of the stress fluctuation formalism
based on the average temperature are presented in fig. S4
of the ESM. Three particle affinities are considered: a het-
erocoordinated system with ǫ12 = 1.5 (red curves), the
reference case with ǫ12 = 1 (blue curves), and a homoco-
ordinated system with ǫ12 = 0.5 (green curves). Varying
ǫ12 has a marked effect on the melting temperature, as
seen in the figure. Here we focus on the interplay between
the effects of interparticle affinity and of the difference
in effective temperatures. Thus, for each of the three val-
ues of ǫ12, we compare a mixture where all particles have
the same effective temperature (ΔT = 0) with a mixture
where the two components have different effective tem-
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Fig. 5. Phase-transition characterization of a binary mixture
with ǫ12 = 1 and different fractions of the hot species, x1.
(a) Density ρ and (b) shear modulus G as a function of average
temperature T ∗ for a one-component system (red circles) and
mixtures with ΔT = 0.6 and x1 = 0.25 (blue squares), x1 =
0.50 (orange crosses), or x1 = 0.75 (green triangles). Error bars
are standard deviations over 8 independent MD runs.

peratures (ΔT = 0.6). As discussed above, increasing ΔT
shifts the transition to a lower temperature. As shown in
the figure, this effect is more pronounced in a homocoordi-
nated system, where each particle type (active or passive)
interacts more strongly with its own kind.

Figure 7(a) and (b) show the RDF for two binary mix-
tures at the liquid state to illustrate heterocoordination
(ǫ12 = 1.5) and homocoordination (ǫ12 = 0.5). In a hete-
rocoordinated system (fig. 7(a)) we observe that the first
peak of g12 (green solid line) is significantly more pro-
nounced than the global RDF for all particles, gall (black
solid line). The opposite is observed at a homocoordinated
system (fig. 7(b)).

As we can expect, when ǫ12 is so small compared to
(ǫ11 + ǫ22)/2 = ǫ11, the system could demix, especially in
low-temperature liquid phase. This possibility exists even
when ΔT = 0, as a simple demixing theory would indi-
cate [37]. Increasing ΔT will certainly favor this segrega-
tion. Figure 7(c) and (d) show snapshots of a liquid binary
mixture (T ∗ = 0.8) with ǫ12 = 0.5 and either ΔT = 0
(plot (c)) or ΔT = 0.6 (plot (d)). In the absence of effec-
tive temperature difference, reduced interparticle affinity
(ǫ12 = 0.5) favors homocoordonation, but the two particle
types remain mixed (plot (c)). In contrast, the joint effect
of reduced interparticle affinity and effective temperature
difference leads to segregation between the two compo-
nents (plot (d)). This segregation is also signaled by the
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Fig. 6. Phase-transition characterization of a binary mixture
with x1 = 0.5 and different interparticle affinities ǫ12. (a) Den-
sity ρ and (b) shear modulus G as a function of average tem-
perature T ∗ for a mixture with either ΔT = 0 (lighter empty
markers) or ΔT = 0.6 (darker full markers) for three differ-
ent interparticle interactions: ǫ12 = 1.5 (red circles), ǫ12 = 1.0
(blue squares), or ǫ12 = 0.5 (green triangles). Error bars are
standard deviations over 8 independent MD runs.

g12 function in fig. 7(b), with conspicuously little struc-
ture. It is noted that segregation between the two com-
ponents can also be obtained with neutral interparticle
affinity (ǫ12 = 1) if the effective temperature difference is
sufficiently large. Indeed, we have observed segregation in
simulations run with ǫ12 = 1 and ΔT = 0.8 for certain liq-
uid state temperatures T ∗. This finding is consistent with
the conclusions of [7], where it was argued that in case of
comparable interaction features, a large difference in the
kinetic energies of the two species would lead to a segre-
gated steady state (in the liquid phase). To summarize, we
observe that the segregation depends on three key param-
eters, ǫ12, ΔT , and T ∗ (very hot liquids tend to mix well).

4 Conclusion

We have investigated the behavior of a two-dimensional
mixture of active and passive colloids with Lennard-Jones
interactions. Active colloids are characterized by an effec-
tive temperature that is higher than that of passive col-
loids. We have investigated the solid-to-liquid phase tran-
sition of the system. We found that the average tempera-
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Fig. 7. Structure of binary mixtures with x1 = 0.5 and dif-
ferent interparticle affinities. (a) A mixture with T ∗ = 0.8,
ΔT = 0.6, and ǫ12 = 1.5. Radial distribution function for all
particles (thick solid black line) and partial radial distribution
functions g11 (dotted red line), g22 (dash-dotted blue line), g12

(thin solid green line). (b) A mixture with ǫ12 = 0.5. All other
parameters as well as the color code are identical to plot a.
(c) Snapshot at steady state for a mixture of two species at
the same temperature, T1 = T2 = T ∗ = 0.8 (ΔT = 0) and
ǫ12 = 0.5. (d) Snapshot at steady state for a mixture with
T ∗ = 0.8, ΔT = 0.6, and ǫ12 = 0.5. The hotter species is
represented in red and the colder in blue.

ture at melting of a mixture of active and passive colloids
is lower than that of a one-component system. Inclusion
of an active component obviously makes the system “hot-
ter” on average and favors transition to the liquid state.
Strikingly, our findings show that this effect is more pro-
nounced than expected from the linear average tempera-
ture of the system. This “enhanced softening” of the mix-
ture increases with differential activity, i.e., the difference
in effective temperature between the two components. Our
calculations of thermomechanical properties show that, at
any given average temperature of the system in the vicin-
ity of the melting transition, an increase of differential
activity between the two components reduces the melt-
ing temperature as well as the shear and compressibility
moduli. This “enhanced softening” effect constitutes the
central result of our paper.

As discussed in the introduction, a perspective of
studying hybrid aggregates is to develop cancer therapies
based on particles. Doping a tumor with passive parti-
cles could rigidify it and limit its spreading. When pro-
jected to this biomedical application, our results warn us
that the effect of passive particle doping may be less than
anticipated by an argument based on linearly averaging
the properties of the two components.
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Consistent with earlier findings [7,20,21], segregation
between the active and passive components may occur due
to differential activity, differential particle affinity, or a
combination of both. Differential activity may induce seg-
regation on its own, but in our simulations this only oc-
curs when the effective temperature of the active colloids
is much larger than the temperature of passive colloids.
This result is encouraging to the perspective of doping a
tumor with passive colloids, as homogeneous mixing can
be obtained. This conclusion is supported by the exper-
imental realization of well-mixed hybrid cell-particle ag-
gregates [16]. When drawing such biological implications,
we acknowledge that the model studied here remains very
idealized, and it lacks many of the features of the real bio-
physical systems. We aim to reduce this gap in our future
work.
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