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Dissipative non-equilibrium dynamics of
self-assembled paramagnetic colloidal clusters†

Mohammed Elismaili, Lydiane Bécu, Hong Xu and David Gonzalez-Rodriguez

We study experimentally and theoretically the dynamics of two-dimensional clusters of paramagnetic

colloids under a time-varying magnetic field. These self-assembled clusters are a dissipative non-

equilibrium system with shared features with aggregates of living matter. We investigate the dynamics of

cluster rotation and develop a theoretical model to explain the emergence of collective viscoelastic

properties. The model successfully captures the observed dependence on particle, cluster, and field

characteristics, and it provides an estimate of cluster viscoelasticity. We also study the rapid cluster

disassembly in response to a change in the external field. The experimentally observed disassembly

dynamics are successfully described by a model, which also allows estimating the particle–substrate

friction coefficient. Our study highlights physical mechanisms that may be at play in biological

aggregates, where similar dynamical behaviors are observed.

1 Introduction

Inert systems spontaneously evolve towards equilibrium states,
corresponding to absolute minima of the free energy, or
towards kinetically trapped states, corresponding to local
minima. Living systems, however, often operate in dissipative
nonequilibrium states by continuously consuming energy.1–3

Dissipative nonequilibrium endows living systems with a
remarkable adaptability to their environment. Whereas equili-
brium states are often associated with permanent properties, such
as the structural color of bird feathers, dissipative nonequilibrium
states enable on-demand changes, such as the active structural
color of the chameleon.4

A physically intriguing type of living system is the assembly
of interacting subunits, such as birds, fish, ants, bacteria, or
cells. For example, cellularised materials are assemblies of cells
linked by intercellular junctions that are found in embryonic
tissues or in pathologies such as tumors.5 These different types
of biological aggregates exhibit emergent collective mechanical
behavior, whose origin is a combination of the mechanical
properties of the subunits as well as of their interactions. Both
the properties and interactions of the subunits rely on active,
energy-consuming processes. Understanding the emergence of
the collective mechanical properties of biological aggregates is
a major current challenge in biophysics.5 Physical investigations of

such biological systems often rely on analogies with model systems
in soft matter,6 such as colloidal aggregates. Conversely, the
versatility of biological materials, which are able to switch from
fluid-like swarms to viscoelastic materials that sustain force, and
from dynamical aggregation to disassembly, is a rich source of
inspiration for the development of new colloidal materials.7

The model system investigated in this article is a two-
dimensional assembly of paramagnetic colloids under an
external, rotating magnetic field. The self-assembly of para-
magnetic colloids has attracted significant attention in recent
years. Whereas self-assembly under a static magnetic field has
been extensively studied,8–14 recent developments have focused
on self-assembly under time-dependent fields.15,42 A time-
dependent, three-dimensional magnetic field can be imple-
mented by a system of Helmholtz coils.16 By varying the field
orientation and frequency, various structures, such as chains,
ribbons, membranes, networks, foams, or vortices, are
formed.15,17–22 Colloidal suspensions under such complex mag-
netic fields exhibit dynamics reminiscent of locomotion,
swarming, or feeding in living systems, which has been
resumed by saying that complex fields breathe life into colloidal
suspensions.23 An additional element of complexity is introduced
by colloidal interactions with liquid or solid interfaces,24 as is the
case in our study.

When paramagnetic colloids on a 2D substrate are subjected
to a static magnetic field, either contained in the plane of the
substrate (tilt angle y = 901) or at a tilt angle larger than the
so-called magic angle, they aggregate into chains. As an exter-
nal rotating field of progressively increasing precession
frequency is applied, the chains first rotate with the field, then
deform under the action of viscous fluid forces, and eventually
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consolidate into isotropic, disk-like clusters.25–27 The rotation
of magnetic particles and clusters is governed by a balance
between viscous resistance and magnetic torque, the ratio of
which is called the Mason number. As the precession frequency
increases, the Mason number increases, and the viscous resis-
tance prevents single magnetic particles from following the
rotation of the field. Thus, single particles first transition from
rotation to wobbling, and at large enough precession frequen-
cies they stop rotating.28 A similar behavior is observed for the
rotation of particle chains stabilized by chemical bonding.29 In
contrast with single particles and permanent chains, isotropic
particle clusters rotate even at high field precession frequen-
cies, albeit their rotation frequency becomes slower than that of
the external field. In the case of clusters of Janus particles, the
rotation at high precession frequencies is driven by hydro-
dynamic interactions.30 A different mechanism, led by visco-
elastic shear waves of cluster deformation, can explain the
rotation of clusters of isotropic magnetic particles at high
precession frequency.26 Here, we investigate these viscoelastic
cluster dynamics, which reproduce several key features of
biological aggregates: first, viscoelasticity emerges as a collec-
tive phenomenon that does not simply reflect the mechanical
properties of individual constituents; second, viscoelasticity
is a dissipative nonequilibrium phenomenon that requires a
continuous energy input; and third, clusters are reversible
structures that disassemble upon changes in the external field.
Magnetic particle clusters under a time-varying field are thus a
model system that allows both mimicking and interpreting dissi-
pative self-assembly mechanisms that are ubiquitous in nature.

In this article we study the dynamics of the rotation of
isotropic paramagnetic particle clusters, the emergence of
viscoelastic properties, and cluster disassembly upon modification
of the external field. Building upon the pioneering work of Tierno
and collaborators, who investigated 7-particle hexagonal clusters,26

here we study paramagnetic clusters of various sizes and particle
types, under external magnetic fields of various intensities and
frequencies. We start by describing our experimental system of
study. Then, we derive two separate, analytical theoretical models
to explain the dynamics of cluster’s rotation and disassembly. Each
of the two models has a single fitting parameter. By comparing the
models’ predictions to our experimental observations, we evaluate
the two parameters and obtain estimates of collective cluster
viscoelasticity and of substrate friction.

2 Materials and methods
2.1 Experimental setup

The experimental setup consists of two pairs of Helmholtz coils
with their main axes contained in the horizontal plane, and a
simple coil with a vertical axis surrounding the others. The
three coil axes are arranged perpendicular to each other
(Fig. 1(a)), which allows generation of a 3D rotating magnetic
field B = (B sin y cos(2pOt), B sin y sin(2pOt), B cos y), where B is
the induced magnetic field strength, O is the precession
frequency, and t is the elapsed time (Fig. 1(b)). The whole setup

is built on the stage of an inverted microscope equipped with a
CCD camera.

2.2 Sample preparation

We use two types of super-paramagnetic polystyrene particles,
Dynabeads M-450 and Dynabeads M-270, of radius a1 = 2.2 mm
and a2 = 1.4 mm, and dimensionless magnetic susceptibilities
w1 = 1.632 and w2 = 0.756, respectively.31 A direct experimental
estimation of particle susceptibilities is presented in the ESI†
and in the Fig. S1 (ESI†) therein. Particles are suspended in a
sodium dodecyl sulfate (SDS) solution with a concentration of
2.1 g L�1. The SDS molecules are adsorbed onto the particle
surface and prevent spontaneous aggregation and particle
binding to the substrate. Before starting the experiment, parti-
cles are allowed to sediment at the bottom of the sample quartz
cell (Hellma Analytics) placed at the center of the triple coil
setup. A weak, vertical magnetic field (B = 0.5 mT) is exerted to
distribute particles over the 1 cm � 1 cm sample cell bottom,
where a particle array of a surface density of (2.15 � 0.35) �
10�3 particles per mm2 is obtained.

2.3 Experimental protocol

First, we investigate the rotation dynamics of 2D self-assembled
colloidal clusters. A 2D monodisperse particle array (Fig. 1(e)) is

Fig. 1 (a) Schematic diagram of the experimental setup. (b) Sketch of an
ensemble of paramagnetic particles located on the sample plane xy at the
bottom of the sample cell. The particles are exposed to a magnetic field B
that rotates with a precession frequency O over the surface of a cone of tilt
angle y. (c) Steric potential between two particles coated with a layer of
SDS molecules of width d and separated by a surface-to-surface distance s
(see the text). (d) Schematic representation of a quasi-circular cluster of
radius Rc. Driven by the in-plane rotating magnetic field, the cluster rotates
with an angular velocity o. The inset shows an experimental image of an
actual rotating cluster. (e and f) Two microscope images (the scale bar is
200 mm) of a mono-dispersed layer of particles M-450 (e) before applica-
tion of the magnetic field and (f) 580 seconds after applying an external in-
plane rotating magnetic field (y = 901; B = 1 mT; O = 2960 Hz).
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placed under an in-plane (y = 901) rotating magnetic field. This
planar field generates dipolar attractive interactions among the
magnetized particles, which causes particle self-assembling
into 2D rotating clusters of different sizes (Fig. 1(d and f) and
Movie S1, ESI†). We set as our baseline experimental conditions
B = 1 mT and O = 660 Hz, using Dynabeads M-450 as particles.
By varying one parameter at a time, we examine how the
angular rotation velocity of the cluster, o, depends on the
characteristics of the magnetic field (O and B) and on
the particle type (with different a and w).

Second, we investigate the dynamics of cluster disassembly.
Once clusters are formed under the action of an in-plane
rotating field, the second experiment starts by imposing a
constant vertical magnetic field in the z-direction (B = 0.9 mT,
y = 01). The vertical field induces repulsive interactions between
the cluster’s particles, which causes their spreading. Both the
rotation and disassembly dynamics are monitored with the CDD
camera at an image rate of 5 frames per second (Movie S2, ESI†).

2.4 Data analysis

The image files are processed using ImageJ (Fiji)32 to obtain the
size, position, and orientation of clusters. A customized code is
used to track the clusters. The instantaneous angular velocity of
a cluster, o, is determined from the variation in the cluster
orientation between consecutive frames. To obtain meaningful
values of o, the calculation is restricted to clusters that are
sufficiently large and stable over time, according to the following
criteria: (i) cluster size above 80 mm2, (ii) variation of cluster size
less than 5%, (iii) cluster trajectory recorded during at least 12 s,
and (iv) standard deviation of o smaller than 0.05 rev s�1.

To quantify the dynamics of cluster disassembly, the particle
closest to the cluster barycenter at the beginning of the experi-
ment is identified as the central particle and assumed to
remain as such. The experimental local density profile during

cluster disassembly is obtained as rðriÞ ¼ 2
� ffiffiffi

3
p �

dðriÞ2
� �

, where
d(ri) is the average distance between a particle located at the
radial distance ri from the cluster center and its six nearest
neighbors. To account for boundary effects, the distance d for
particles at the cluster’s edge is calculated as the average
distance to its three nearest neighbors only, and a factor of
1/2 is applied to the resulting density r. The cluster radius
R(t) is that of the circle circumscribing all the cluster’s particles.

3 Theoretical models
3.1 Dynamics of cluster rotation

The rotation of self-assembled 2D paramagnetic clusters in a
rapidly precessing magnetic field with a tilt angle above the
magic angle was first studied by Tierno et al.26 for small
hexagonal clusters consisting of 7 particles. At high precession
frequency, cluster rotation was theoretically explained by the
dynamics of dissipative elastic shear waves traveling around the
cluster.26 However, as discussed in Section 4, this hexagonal
cluster model is not directly applicable to our experiments
including a variety of cluster sizes, as its predictions fail to

describe the dynamics we observe. Taking the hexagonal cluster
model as our starting point, we develop an extended theoretical
model that captures the new physics in our experiments.

Cluster self-assembly is driven by the time-averaged dipolar
interactions between the time-varying magnetic dipoles induced
by the rotating field. The equilibrium particle positions in the
cluster are determined by a balance between these attractive
interactions and the short-range repulsive steric interactions
arising from the SDS molecules adsorbed onto the particle’s
surface (Fig. 1(b)). At high precession frequency O of the external
magnetic field, the particle’s dipole orientation cannot follow the
field rotation, and single particles do not rotate. In contrast,
clusters rotate, although at a lower speed than the external
field. The mechanism of cluster rotation is not due to dipole
rotation, nor does it require an anisotropic cluster shape.
Rather, rotation of isotropic clusters is enabled by dynamic
deformation driven by the imbalance of magnetic forces at the
cluster’s edge. By using a continuum description, which is valid
for clusters containing a sufficiently high number of particles,
magnetic forces acting at the edge of the two-dimensional
cluster can be expressed as a dipolar line tension, with units
of force, given by ldip = lis + lanis cos(2F), where F is the
in-plane angle between the magnetic field and the vector
normal to the cluster boundary, n.26 The isotropic component
lis assures cluster cohesion, whereas the anisotropic compo-
nent lanis induces cluster deformation. As in previous work,26

we conceptualize the cluster as a 2D incompressible visco-
elastic solid, whose deformation is described by the elasticity
equation �=p + GcDu = 0, where Gc is the complex shear
modulus, and p 4 0 is the steric pressure. By solving the
elasticity equation subjected to the boundary condition that
the elastic stress normal to the boundary is caused by the
dipolar line tension gradient, the following expression of the
radial component of the dynamic cluster deformation is
obtained:26

ur ¼
�2lanisRc

3ðlis þ GcRcÞ
expð�2iFÞ ; (1)

where Rc is the cluster radius.
The rotating magnetic field exerts a magnetic torque

tm = VcB2 sin2(y)weff
00/m0 on the cluster, where Vc is the cluster

volume, m0 is the vacuum permeability, and weff
00 is the imaginary

part of the magnetic susceptibility, weff
00 = 3paur

00/8Rc
2, where

a is the particle radius.26 Cluster rotation is opposed by a viscous
torque tvisc = fZwR3

co, where Zw is the viscosity of water, and
f = ApRco

1/2/2n1/2
w is the dimensionless hydrodynamic drag

coefficient of the cluster, assimilated to a rotating flat disk near
a wall, with nw the kinematic viscosity of water and A a numerical
constant that depends on the disk roughness (A = 0.6159 for a
flat, impervious disk).33 Unlike previous modeling work,26 we do
not simplify the hydrodynamic drag as that of a collection of
non-interacting spheres, but rather we consider the drag due to
the actual cluster shape.

Cluster viscoelasticity is described by the Kelvin–Voigt
model, Gc = K � 2i(O � o)Zc, where K is the 2D elastic modulus
(with units of force per length) and Zc is the 2D cluster viscosity
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(with units of force–time per length). Thus, the radial distortion
becomes (see the ESI† for details):

ur ¼
�2lanisRc lis þ KRcð Þ þ 2iðO� oÞZcRc½ �

3 lis þ KRcð Þ2þ 2ðO� oÞZcRcð Þ2
h i expð�2iFÞ: (2)

At this point we diverge again from previous work on
hexagonal clusters,26 which assumed a cluster elasticity propor-
tional to the isotropic surface tension, K = lis/Rc. If we applied
this hypothesis to our larger clusters, we would predict a radial
cluster deformation of the order of 50%, much larger than what
is observed experimentally. Rather, we postulate that the domi-
nant contribution to the storage shear modulus arises from
steric interactions. The steric interaction potential (Fig. 1(c))
between two identical particles of radius a, with a coating layer
of width d and separated by a surface-to-surface distance s is:34

U ¼
C0a

2 2� l

q
� l þ 2

q
ln

1þ q

1þ l=2

� �
if l � 2q;

0 if l4 2q;

8><
>: (3)

where C0 � 2pGkBT, kB is the Boltzmann constant, T is the
temperature, G is the so-called grafting density, i.e., the surface
density of molecules adsorbed onto the particle surface,
s = r � 2a, with r the center-to-center distance, l � s/a, and
q � d/a. Since q { 1, we can simplify the steric potential

expression for l r 2q as: U � C0a
2 q� l þ l2

4q

� �
.

The 2D elastic modulus K of the cluster is then deduced as
follows. If we apply a pressure pc along the cluster edge, the

cluster radius is reduced by a magnitude DRcj j ¼
ÐRc

a
eðrÞdr,

so that pca = K|DRc|/Rc. The local deformation at radius r due
to the pressure p(r) = pcRc/r is e(r) = ap(r)/(d2U/dr2). Thus, we
obtain K = Ca/ln(Rc/a), with C � C0/(2d).

By balancing the magnetic and viscous torques and by
considering that O c o, lis { KRc, and ZcO { K, we obtain
the cluster’s angular velocity:

o ¼ g ln 2=3 25=2

31=4e7=3
Rc

a

� �
ln 4=3 Rc

a

� �
ðawÞ4=3

R
8=3
c

O2=3B8=3; (4)

with g � 4p2

18Am20

ffiffiffiffiffiffi
nw
p

Zw

Zc
C2

sin4 y
� 	2=3

.

Let us analyze eqn (4) by considering only the dominant
power-law dependencies. The equation predicts the cluster’s
angular velocity to approximately depend on cluster size as
o p R�8/3

c , on particle properties as o p (aw)4/3, and on
magnetic field frequency and intensity as o p O2/3B8/3.
In contrast, the earlier hexagonal cluster model26 predicted a
different dependence on field precession frequency and particle
susceptibility, o p O/w2, a weak (logarithmic) dependence on
Rc/a, and it predicted o to be independent of B. We note that our
predicted dependence of o on particle size arises from assuming
that particle repulsion is dominated by steric interactions.
A similar result would be obtained for electrostatic repulsion.
Indeed, the electrostatic repulsion potential between two
particles of radius a at an interparticle distance s scales as

U p a exp(�ks), where k�1 is the Debye length. Therefore, the
2D elastic modulus would scale as K B q2U/qs2

p a, which
is the same dependence as obtained for steric interactions.
Therefore, the predicted parameter dependences are robust,
independent of whether interparticle repulsion is dominated by
steric or electrostatic interactions.

The parameters present in eqn (4) can all be determined
from the characteristics of our experimental setup, except for
one single fitting parameter, Zc/C2. Fitting this viscoelastic
parameter to the experimental data allows estimating the
magnetic cluster’s viscosity, Zc.

3.2 Disassembly dynamics

We now consider the dynamics of disassembly of a cluster
subjected to a static magnetic field perpendicular to the cluster
plane. Two previous studies investigated this phenomenon
through experiments and numerical simulations, describing
pattern formation35 and quantifying the early dynamics, where
particles lose contact with each other.36 Here we present a
closed-form analytical model able to describe the long-term
dynamics (see the ESI† for additional details of the derivation).
We consider the spatio-temporal variation of the density pro-
file, r(r,t), defined as the number of particles per unit area. We
adopt a mean-field approach to write the conservation equation
of the particle number,

@r
@t
þ v

@r
@r
¼ �r v

r
þ @v
@r

� �
; (5)

where v is the radial velocity of particles, related to the inter-

particle magnetic force F by v ¼ F

x
, where x is the particle–

substrate friction coefficient. In the mean-field approach, the
dipolar potential energy depends on the local density by

Udip ¼
2M

5

m0
4p

wV
2B2rðr; tÞ3=2, where wV = wVp/m0 with Vp = 4pa3/3

the particle volume, and M E 11.116 is a geometrical constant
obtained by the sum of dipolar interactions among all particles
in an hexagonal lattice.14 Thus we obtain the particle velocity

v ¼ �r
1=2

b
@r
@r

, with b ¼ 20px
3Mm0wV2B2

. Eqn (5) becomes:

b
@r
@t
¼ r3=2

@2r
@r2
þ 1

r
r3=2

@r
@r
þ 3

2
r1=2

@r
@r

� �2

; (6)

with boundary conditions qr/qr = 0 at r = 0 and r(R) = 0, where
R is the cluster radius (note that R(t = 0) = Rc). To solve eqn (6),
we assume that the density profile can be factorized as r(r,t) =
r0(t)y(x), where r0(t) = r(0,t) is the density at the cluster
center, and x = r/R(t) is the dimensionless radial distance.
The conservation law of the total number of particles N yields:

r0ðtÞ ¼
N

pI
1

RðtÞ2;
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where I �
Ð 1
02yðxÞxdx. Therefore, eqn (6) can be written as:

�2b pI
N

� �3=2

R4dR

dt
¼ y1=2y00 þ y1=2

y0

x
þ 3

2
y�1=2ðy0Þ2

� 	
1þ xy0

2y

� 	�1

¼ �a;
(7)

where a is a separation constant and y0 and y 00 are respectively
the first and second derivatives of y(x). The exact solution for
the temporal factor in eqn (7) is:

RðtÞ5 ¼ R5
c þ

5a
2b

N

pI

� �3=2

t; (8)

whereas the exact solution for the spatial factor is:

y(x) = (1 � x2)a/4, (9)

with a = 8/3.
The model’s eqn (8) predicts an evolution of the cluster

radius R such that R5 increases linearly with t. This result
contains one single fitting parameter, which is the particle–
substrate friction coefficient x, contained in the parameter b.
Thus, by fitting eqn (8) to the experimentally observed cluster
radius evolution, the model allows estimating x. Moreover, the
model predicts that the spatial density structure of the cluster
follows a normalized master curve given by eqn (9).

4 Results and discussion
4.1 Rotation of self-assembled clusters

4.1.1 Dependence on cluster size and magnetic field
frequency. In our experiments, we observe that for a sufficiently
high precession magnetic field frequency, particles self-
assemble into rotating 2D clusters with different sizes (see
Movie S1, ESI†). The angular velocity of the cluster, o, depends
on the cluster’s area Ac, i.e., on the number of particles forming
the cluster, and on the magnetic field frequency O. Fig. 2(a)
shows that smaller clusters rotate faster, and that the cluster’s
angular velocity increases with the precession magnetic field
frequency. Fig. 2(b) shows the angular velocity of clusters
normalized according to eqn (4) and demonstrates that the
experiments are well described by our theoretical model.
The prediction is best for larger clusters, where our model’s
continuum approximation is fully appropriate.

By fitting the model’s single parameter to the experiments, we
obtain a cluster viscoelastic ratio Zc/C

2 = 5.6� 10�14 N s m�1 Pa�2.
To further characterize the viscoelastic properties, we need to
estimate C, related to cluster elasticity arising from steric
interactions. Because the value of C is very sensitive to the
nanoscale characteristics of the particle coating, whose accu-
rate determination is difficult, we proceed by a direct measure-
ment of cluster elasticity. We measure cluster deformation
when the field increases from B = 0.5 mT to B = 1 mT. The
pressure exerted on the cluster depends on B through the
isotropic component of the line tension, pc = lis/(4pRca).
By measuring the resulting decrease in cluster radius |DRc|,
the cluster elasticity can be estimated from the previously

stated relationship, DRcj j ¼
ÐRc

a
eðrÞdr. This leads to an estimate

of the elasticity coefficient C ¼ aw2

108m0
lnð1:58Rc=aÞ lnðRc=aÞ

DðB2Þ=jDRcj ¼ 7:7� 1:0 Pa and to an estimate of the 2D cluster
viscosity Zc = (3.5 � 0.6) � 10�12 N s m�1, a comparable value to
previously reported magnetic cluster viscosity measurements.26

Fig. 2 (a) Angular velocity of cluster rotation o as a function of cluster
area Ac at different magnetic field frequencies O. Experiments are per-
formed with M-450 particles and B = 1 mT. (b) Normalized angular velocity

~o=O2=3, with ~o ¼ o ln �2=3
25=2

31=4e7=3
Rc

a

� �
ln �4=3

Rc

a

� �
. The continuous black

line is a fit using eqn (4). (c) Normalized cluster rotation frequency of a
rotating hexagon of seven particles as a function of O for y = 901, as
reported by Tierno et al.26 The dashed black line represents the scaling
predicted by Tierno et al. (o p O), and the full red line is a fit to Tierno
et al.’s data using eqn (4). Error bars in plots (a) and (b) are standard
deviations over 5 experiments.
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In Fig. 2(b), we note that the collapse between the data
corresponding to different O, while satisfactory, is not perfect.
However, the scaling dependence predicted by our model o p

O2/3 performs much better than the prediction of the hexagonal
cluster model, oHex p O, both when applied to our data and to
the previously published hexagonal cluster data26 (Fig. 2(c)).
In Fig. 2(c) we observe that both our model and the earlier
hexagonal model26 correctly predict the hexagonal data at large
precession frequencies but not at lower ones. Indeed, at pre-
cession frequencies lower than about 100 s�1, the magnetic
susceptibility tensor of the cluster becomes anisotropic,26

inducing faster rotation than the viscoelastic deformation
mechanism considered in our model.

4.1.2 Dependence on magnetic field strength. Fig. 3(a)
shows the cluster angular velocity o as a function of its area
Ac for O = 660 Hz for three different magnetic field strengths,
B = 0.5, 1, and 2 mT. The hexagonal cluster model predicts an o
independent of B and thus cannot account for the observed
dependence. In contrast, our model’s eqn (4) predicts the
scaling o p B8/3. Fig. 3(b) shows that the experimental curves
of o normalized according to eqn (4) collapse with each other,
and an excellent agreement between theory and experiments
is found, especially for larger clusters. We also performed
experiments at a larger field strength (B = 3 mT, not shown).
For B Z 3 mT, magnetic forces may overcome gravity and we

observe the formation of clusters with vertically superimposed
particles, a configuration that is no longer described by our
theory.

4.1.3 Dependence on particle characteristics. Fig. 4 com-
pares the dynamics of clusters of two different particle types,
Dynabeads M-270 and M-450. M-270 particles have a smaller
size and a smaller magnetic susceptibility than M-450 particles.
We observe that an M-270 cluster rotates slower than an M-450
cluster of the same size. Fig. 4(a) shows the dependence
between o and Ac for the two particle types. In Fig. 4(b)
the results are normalized according to the dependence on
particle size a and susceptibility w predicted by eqn (4). When
normalized by our prediction, for large clusters the two curves
collapse into a master curve that is in excellent agreement with
the prediction of our mean-field model.

4.2 Disassembly dynamics

Upon application of a vertical magnetic field (y = 01), the cluster
disassembles and spreads. A quasi-triangular lattice was
observed with a local density r depending on radial position r
and time t. Fig. 5(a) shows experimental snapshots for a cluster
of 47 particles exposed to a magnetic field of strength B = 0.9

Fig. 3 (a) Cluster angular velocity o as a function of cluster area Ac

(M-450; O = 660 Hz) at three different magnetic field intensities B.
(b) Normalized cluster angular velocity ~o/B8/3 as a function of Ac. The
continuous black line is a fit using eqn (4). Error bars are standard
deviations over 5 experiments.

Fig. 4 (a) Cluster angular velocity o as a function of cluster area Ac for
O = 660 Hz, B = 1 mT for two different particle types, Dynabeads M-270
and M-450. (b) Normalized angular velocity ~o/(aw)4/3 as a function of Ac.
The continuous black line is a fit using eqn (4). Error bars are standard
deviations over 5 experiments. The figure is obtained using the values of w
reported in the literature.31 A version of the same figure using our direct
experimental estimates of w is shown in Fig. S2 in the ESI.†
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mT (see also Supplementary Movie 2, ESI†). Fig. 5(b) shows an
evolution of the cluster radius such that R(t)5 increases linearly
with t, as predicted by eqn (8). By fitting the experimental data
we estimate a particle–substrate friction coefficient x E 1.8 �
10�7 Pa s m. This value is about 4 times larger than the friction
coefficient due to the Stokes drag on a spherical particle, which
indicates that substrate friction dominates over the hydro-
dynamic drag, as assumed in our model. The spatial depen-
dence of the density profiles is shown in Fig. 5(c). As shown in
the figure, the normalized density profiles at different times
collapse into a master curve that is well described by our
theoretical model, eqn (9). Overall, we conclude that our
theoretical model of cluster disassembly provides an excellent
description of both the spatial and temporal behaviors
observed in the experiments.

5 Conclusions

We have investigated the rotation dynamics of disk-like para-
magnetic particle clusters of different sizes and particle types in
a precession magnetic field. Building on a previous study of the
dynamics of 7-particle hexagonal clusters,26 we have developed
a theoretical model that links cluster rotation to its viscoelastic
properties. Cluster rotation is driven by the magnetic torque
and resisted by viscous friction. In the frequency range studied
here, viscous friction prevents the cluster rotation from following
the field. The cluster rotates at a slower frequency than that of

the field, due to the emergence of an anisotropic line tension
of magnetic origin. The combination of time-varying magnetic
interactions and of an elastic resistance dominated by steric
interactions makes the cluster behave as a viscoelastic material.
Our theoretical model successfully describes the rotation
dynamics and its dependence on cluster size, particle character-
istics, and precession field frequency and strength. The model
contains one single fitting parameter. By adjusting this parameter
to the experimental data, we estimate the cluster viscoelasticity
emerging in the rotation dynamics.

Upon switching the horizontal precession field into a
vertical field, dipolar interactions become repulsive and the
cluster disassembles. We explain the experimentally observed
dynamics of cluster disassembly by a mean-field transport
model. We obtain an exact, closed-form analytical solution,
which describes the cluster’s spatio-temporal density profile,
in excellent agreement with the experiments. The theoretical
model contains one single fitting parameter, which allows
estimating the friction coefficient between particles and the
substrate.

As discussed in the introduction, paramagnetic colloidal
clusters are a dissipative self-assembled colloidal system that
shares features with biological aggregates. In spite of the
numerous differences with living matter, the shared physical
features encourage us to project our findings onto future
research directions in biophysical systems. The rotation of 2D
isotropic magnetic clusters is reminiscent of spontaneous
rotation observed in constrained 2D cell sheets,37–39 the
mechanisms of which are only partially understood. The same
as the magnetic clusters, cell sheets are viscoelastic materials.
Thus, travelling viscoelastic shear waves could be a mechanism
at play in cell sheet rotation. Disassembly of magnetic clusters
is reminiscent of the spread of tumoral cellular aggregates.40

Indeed, tumor malignancy is linked to the epithelial-to-
mesenchymal transition,41 which enables cells to lose inter-
cellular adhesion, escape from the tumor, and potentially
initiate metastasis. This phenomenon bears resemblance with
the switch from attractive to repulsive interactions that induce
the disassembly of our magnetic clusters. This analogy suggests
the possibility of transposing our mean-field theoretical
description of magnetic cluster disassembly to describe the
physics of the spread of certain types of tumor cells, by
accounting for the appropriate biophysical interactions.
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Fig. 5 (a) Experimental snapshots of the disassembly dynamics of a
cluster of 47 particles (Dynabeads M-450). A constant, vertical magnetic
field with B = 0.9 mT and y = 01 is applied at t = 0. The scale bar
corresponds to 20 mm. (b) Evolution of the cluster’s size. Circles are
experimental measurements and the black line is the prediction given by
eqn (8). Error bars represent the uncertainty in measuring the cluster
radius. (c) Density profile normalized by the maximal experimental density
rmax(t) E r0(t) as a function of the normalized distance x = r/R, where R is
the circle circumscribing the cluster. Circles represent averages over the
14 successive snapshots, with error bars representing standard deviations.
The black line is the model’s prediction, eqn (9).
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