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Abstract
Due to the kinematic reversibility of Stokes flow, a body executing a reciprocal motion
(a motion in which the sequence of body configurations remains identical under time reversal)
cannot propel itself in a viscous fluid in the limit of negligible inertia; this result is known as
Purcell’s scallop theorem. In this limit, the Reynolds numbers based on the fluid inertia and on
the body inertia are all zero. Previous studies characterized the breakdown of the scallop
theorem with fluid inertia. In this paper we show that, even in the absence of fluid inertia,
certain dense bodies undergoing reciprocal motion are able to swim. Using Lorentz’s reciprocal
theorem, we first derive the general differential equations that govern the locomotion kinematics
of a dense swimmer. We demonstrate that no reciprocal swimming is possible if the body
motion consists only of tangential surface deformation (squirming). We then apply our general
formulation to compute the locomotion of four simple swimmers, each with a different spatial
asymmetry, that perform normal surface deformations. We show that the resulting swimming
speeds (or rotation rates) scale as the first power of a properly defined ‘swimmer Reynolds
number’, demonstrating thereby a continuous breakdown of the scallop theorem with body
inertia.

1. Introduction

At the small scales of swimming micro-organisms, the inertial
mechanisms of locomotion used by larger animals become
ineffective. Fluid flow in the limit of zero Reynolds number
is governed by the Stokes equations, which are both linear and
independent of time. In this limit, Newton’s equations of body
motion reduce to balances of forces and torques, which depend
on time only through the sequence of body configurations. Due
to these properties, a periodic motion in which the sequence
of body configurations remains identical under time reversal
(termed a ‘reciprocal’ motion) yields a net translation equal to
its opposite, and therefore equal to zero. This result is known
as Purcell’s ‘scallop theorem’ [1]. In particular, any periodic
motion of an organism with one degree of freedom, such as a
scallop, is reciprocal. Such an organism cannot propel itself in
the limit of zero Reynolds number.

Consider a swimmer (i.e., a self-propelled, deforming
body) of density ρp and characteristic size a immersed in a
fluid of density ρ � ρp and dynamic viscosity μ. The

swimmer executes a reciprocal motion of amplitude A and
radian frequencyω. There are three relevant Reynolds numbers
that characterize this oscillatory motion [2]. The ‘unsteady’
Reynolds number, Reω ≡ ρa2ω/μ, is the scale ratio of
the unsteady terms to the viscous terms in the Navier–Stokes
equations. The ‘advective’ (or ‘frequency’ [2]) Reynolds
number, Ref ≡ ρa Aω/μ, is the scale ratio of the nonlinear
advective terms to the viscous terms. Finally, the ‘particle’
Reynolds number (or ‘Stokes number’ [3]), Rep ≡ ρpa2ω/μ,
is the scale ratio of the particle inertia to the viscous forces on
the particle.

How much inertial force is necessary for a reciprocal
motion to become propulsive? Childress and Dudley [4]
addressed this question for the case of a symmetric, reciprocal
flapper, and concluded that the breakdown of the scallop
theorem occurs above a finite threshold of the ‘advective’
Reynolds number, Ref, of order unity. As discussed by
Childress and Dudley, the breakdown of the scallop theorem
is relevant to the study of swimming organisms that cross
the Ref threshold as they grow, such as the larvae of certain
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molluscs [4], crustaceans [5], tunicates [6], or fish [7, 8].
The existence of a finite threshold above which the scallop
theorem becomes invalid has been confirmed in laboratory
experiments [9, 10] and numerical simulations [11]. In
contrast, Lauga [2] devised examples of oscillatory reciprocal
motions with broken spatial symmetries for which the net
translational velocity is proportional to Reαf , for a certain
α > 0, thus demonstrating a continuous breakdown of the
scallop theorem for any Ref > 0 (see also [12]). In this
paper, we study the breakdown of the scallop theorem with
Rep in the presence of spatial asymmetries. While Lauga [2]
studied the limit of {Reω, Rep} � Ref � 1, here we consider
dense swimmers (ρp/ρ � 1 and ρp/ρ � A/a) for which
{Reω, Ref} � Rep � 1. We consider therefore the limit of
negligible fluid inertia and show that locomotion is possible
nonetheless. As in previous studies of the dynamics of simple
swimmers (e.g., [13–15]), the examples presented here do not
necessarily resemble real organisms, but they are intended to
illustrate the theory and provide physical insight. Analogous
to [2], our examples show a breakdown of the scallop theorem
for any arbitrarily small Rep > 0, since the net translational
velocity (or rotation rate) for all our examples is proportional
to Rep.

In section 2, we derive a general framework, using
Lorentz’s reciprocal theorem [16, 17], to describe the motion
of a dense swimmer. In section 3, we apply our general
framework to study four examples of spatially asymmetric,
dense reciprocal swimmers and show that they experience
directed motion for arbitrarily small values of Rep. The
nonlinear interaction mechanism responsible for locomotion in
the four examples is summarized in section 4.

2. Reciprocal theorem for a dense swimmer

Consider the limit of a dense swimmer, {Reω, Ref} � Rep �
1, introduced in section 1. If the fluid inertia is neglected,
Lorentz’s reciprocal theorem [16] can be applied to relate the
instantaneous dynamics of the swimmer to those of a towed,
rigid body of the same shape [17]. Let the rigid body be towed
with a constant force, F̂ , plus a constant torque about a point
P in the body, L̂P. Assume the swimmer and the rigid body to
be immersed in fluids of the same kinematic viscosity. The
surface velocities and stresses on the swimmer, (u, σ ), are
related to those on the rigid body, (û, σ̂ ), by

∫
S(t)

n · σ̂ ·u dS =
∫

S(t)
n · σ · û dS, (1)

where S(t) is the instantaneous location of the swimmer
surface and n is the normal vector to it. The surface velocity
of the swimmer can be written as u = UP +Ω× (r−rP)+u′,
where UP is the translational velocity of the reference point
P, Ω is the angular velocity, r is the position vector with an
origin fixed at the inertial frame, and u′ is the deformational
component of the surface velocity. Note that the values of u′
depend on the choice of P. All time derivatives are referred
to the inertial frame. The surface velocity of the towed, rigid
body is û = ÛP + Ω̂ × (r − rP). For a dense swimmer of

constant mass, m, and homogeneous density, balances of forces
and torques require

∫
S(t)

n ·σ dS = m
duG

dt
(2a)

∫
S(t)
(r − rP)× (n ·σ ) dS

= (rG − rP)×
(

m
duG

dt

)
+ d (IG ·Ω)

dt
, (2b)

where rG and uG are the position vector and velocity of the
swimmer’s centre of mass, G, and IG is the inertia tensor
referred to G. Introducing (2a) and (2b) into (1) results in
(

m
duG

dt

)
·
(
ÛP + Ω̂ × (rG − rP)

)

+ d (IG ·Ω)
dt

· Ω̂ − F̂ ·UP − L̂P ·Ω

=
∫

S(t)
n · σ̂ ·u′ dS. (3)

This derivation is valid in the absence of a body force. In the
presence of a homogeneous gravitational acceleration, g, the
terms m duG/dt in (2a), (2b), and (3) should be replaced by
m (duG/dt − g). In (3), the rigid-body velocities, ÛP and
Ω̂, are arbitrary. By alternately taking Ω̂ = 0 and ÛP = 0,
(3) yields two differential equations for the translational and
rotational velocities of the swimmer, UP and Ω.

As an example, consider the application of (3) to
a squirming sphere of radius a, which undergoes purely
tangential deformation. Take P ≡ G, which is assumed to
remain at the sphere centre. The differential equation for UG

is obtained by choosing Ω̂ = 0, for which L̂P = 0. Then,
F̂ = −6πμaÛG and n · σ̂ · Û = −3μ/(2a), which yields

2a2ρp

9μ

dUG

dt
+ UG = − 1

4πa2

∫
S0

u′ dS, (4)

where S0 represents the sphere surface. The differential
equation for Ω is obtained by choosing ÛG = 0, for which
F̂ = 0. Then, L̂G = −8πμa3Ω̂ and n · σ̂ · (Ω̂ × n) = −3μ,
which yields

a2ρp

15μ

dΩ
dt

+ Ω = − 3

8πa3

∫
S0

n × u′ dS. (5)

Note that (4) and (5) reduce to equations (4) and (6) of [17]
in the limit of Rep = 0. Note also that, for a reciprocal
squirming deformation, the time averages of (4) and (5) yield
zero net translation and rotation. The same conclusion is
obtained from (3) for any reciprocal squirmer, since S(t) = S0

is constant, and F̂ , L̂p, and σ̂ remain constant over the period
of motion for constant ÛP and Ω̂. Therefore, a dense reciprocal
swimmer needs to undergo deformation normal to its surface in
order to propel itself.
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Figure 1. Geometry of the two unequal spheres moving along their
line of centres (z-direction).

3. Examples of dense reciprocal swimmers

The general framework derived in the previous section
is here applied to four specific swimmers: two unequal
spheres moving along a straight line, two unequal spheres
moving along a circumference, a scallop-like swimmer, and a
deforming sphere. These simple examples illustrate reciprocal
locomotion in the absence of fluid inertia; the goal is therefore
to compute the net translational velocity of each swimmer as a
function of Rep. For simplicity, gravity is not accounted for in
these examples; the inclusion of gravity is straightforward, and
its effect is discussed at the end of section 4.

3.1. Translation of two unequal spheres

Consider the swimmer shown in figure 1, which consists of
two unequal spheres. The spheres have radii a and b, which
are different but of comparable magnitude, that is, β ≡ b/a =
O(1). Note that β �= 1 is required to break the spatial
symmetry and yield net motion. The time-dependent distance
between the sphere centres, L(t), is large compared with the
sphere radii, so that L = O(a/ε), where ε ≡ a/〈L〉 � 1, and
the angular brackets 〈〉 denote a time average over the period of
motion. The two spheres are able to exert equal and opposite
forces on each other, so that L(t) is a prescribed periodic
function of time with radian frequency ω. The spheres move
with velocities Wa(t) = W (t)+w′(t) and Wb = W (t)−w′(t),
wherew′ = 1/2 dL/dt , and W (t) is the unknown translational
velocity of the reference point, P, which is chosen at the
midpoint between the sphere centres. The parameter of interest
is the net translational velocity, 〈W (t)〉.

The reciprocal theorem (3) relates the dynamics of interest
to those of a system of two spheres separated a distance L being
towed at a constant speed Ŵ along their line of centres. By
computing the effect of each sphere on the other as that of an
equivalent point force, the hydrodynamic resistance forces in
the z-direction on the rigid, towed spheres are [16]

F̂h
a = 6πμaŴ

[
−1 + 3b

2L
+ O

(
ε2
)]

(6a)

F̂h
b = 6πμbŴ

[
1 − 3a

2L
+ O

(
ε2
)]
. (6b)

Application of (3) to this swimmer yields

ρp
4

3

[(
a3 + b3

) dW

dt
+ (

a3 − b3
) dw′

dt

]
Ŵ −

(
F̂h

a + F̂h
b

)
W

=
(

F̂h
a − F̂h

b

)
w′. (7)

Next, we non-dimensionalize (7) using a and 1/ω as the length
and timescales. The non-dimensional variables and parameters
are τ ≡ ωt , β ≡ b/a, W̃ ≡ εW/(aω), and λ(τ) = εL/a.
We expand W̃ in powers of Rep ≡ ρpa2ω/μ � ε � 1, i.e.,
W̃ = W̃0 + RepW̃1 + · · ·. With this, (7) becomes

Repλ(1 + β3)

(
dW̃0

dτ
+ · · ·

)

+ 9
2 [(1 + β)λ− 3βε + O(ε2)](W̃0 + RW̃1 + · · ·)

= Rep
(−1 + β3

) 1

2
λ

d2λ

dτ 2
+ 9

4

[−1 + β + O(ε2)
]
λ

dλ

dτ
. (8)

The solution to O(Re0
p) is

W̃0 = 1

2

(−1 + β)λdλ/dτ

(1 + β)λ− 3βε
+ O(ε2), (9)

and 〈Ŵ0〉 = 0. Note that the average translational velocity
would remain zero even if higher-order terms were retained,
i.e., there is no net translation of the two-sphere system to
O(Re0

p). In contrast, the solution to O(Re1
p) includes terms

of the form λ (d2λ/dτ 2), which yield a non-zero average. For
example, suppose the distance between the spheres varies as
λ = 1 + ε Ã sin τ , where Ã = A/a = O(1) is the non-
dimensional amplitude. In this case,

〈W̃1〉 = ε3β(β − 1)
(−β2 + 3β − 1

)
6(1 + β)2

Ã2 + O(ε4). (10)

Then, in dimensional form, the net translational velocity is

〈W 〉 = Repaωε2β(β − 1)
(−β2 + 3β − 1

)
6(1 + β)2

(A/a)2

+ O(Repε
3, Re2

p). (11)

Note that 〈W 〉 tends to zero as L → ∞, reflecting the fact that
the net translational velocity is due to the interaction between
the spheres. The smaller sphere advances in front (〈W 〉 > 0)
for 1 < β < (3 + √

5)/2, and the larger sphere advances in
front (〈W 〉 < 0) for β > (3 + √

5)/2.

3.2. Circular motion of two unequal spheres

Consider the swimmer shown in figure 2, which is a two-
sphere version of the rotator devised by Dreyfus et al [15]. As
was the case in the previous example, the spheres have radii
a and b, which are different but of comparable magnitude,
that is, β ≡ b/a = O(1). Again, β �= 1 is required
to break the spatial symmetry and yield net motion. The
spheres are constrained to move along the circumference of
centre P (which is held fixed) and radius R, which is much

3
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Figure 2. The inertial rotator. The spheres are constrained to move
along the circumference of centre P and radius R.

larger than a, R̂ ≡ R/a � 1. The angle between the
spheres, 2θ(t), varies periodically with radian frequency ω in
a prescribed manner. Specifically, θ(t) = θ0 + εθ1(t), with
ε ≡ a/〈L〉; L is the distance between the sphere centres,
and O(θ0) = O(θ1) = O(1). As a result of the interaction
between the spheres, there is an unknown rigid-body rotation
with angular velocity �(t), whose time average we want to
determine. The spheres move with linear velocities Ua(t) and
Ub(t) and experience hydrodynamic resistance forces Fh

a (t)
and Fh

b (t) in the azimuthal direction.
If both spheres were towed along the circumference at

a constant angular velocity �̂, the azimuthal hydrodynamic
forces on the spheres, taken positive in the anticlockwise
direction, would be [16]

F̂h
a = 6πμa R�̂

[
−1 + 3b

4R

cos2 θ

sin θ
− 3b

8R
sin θ + O(ε3)

]

(12a)

F̂h
b = 6πμbR�̂

[
−1 + 3a

4R

cos2 θ

sin θ
− 3a

8R
sin θ + O(ε3)

]
.

(12b)
Introducing the expression of the prescribed motion into (12a)
and (12b) yields

F̂h
a = 6πμa R�̂

[
−1 + 3b

8R

(
γ0 − γ1εθ1 + O(ε2)

)]
(13a)

F̂h
b = 6πμbR�̂

[
−1 + 3a

8R

(
γ0 − γ1εθ1 + O(ε2)

)]
, (13b)

where γ0 = (3 cos2 θ0 − 1)/ sin θ0 and γ1 = cos θ0(2 +
3 sin2 θ0)/ sin2 θ0. With (13a) and (13b), application of (3)
results in

ρp
4

3
π

[
(a3 + b3)R

d�

dt
+ (a3 − b3)R

d2θ

dt2

]
R�̂

+ ρp
4

3
π

[
2

5
(a5 + b5)+ a9 + b9

(
a3 + b3

)2 L2

]
d�

dt
�̂

− (F̂h
a R + F̂h

b R)� = (F̂h
a − F̂h

b )R
dθ

dt
. (14)

Next, we non-dimensionalize (14) by defining Rep ≡
ρpa2ω/μ � ε � 1, τ ≡ ωt , β ≡ b/a, R̃ ≡ Rε/a, and
�̃ ≡ �/(εω) and expand �̃ = �̃0 + Rep�̃1 + · · ·. Thus,

2

9
Rep R̃

[
(β3 + 1)+ β9 + 1

(β3 + 1)2
sin2 θ0 + O(ε)

](
d�̃0

dτ
+ · · ·

)

+
[
(1 + β)R̃

− 3
4β
(
γ0ε − γ1ε

2θ1 + O(ε3)
) ] (

�̃0 + Rep�̃1 + · · ·
)

= 2

9
Rep R̃

(
β3 − 1

) d2θ1

dτ 2
+ (β − 1)R̃

dθ1

dτ
. (15)

The solution to O(Re0
p) is

�̃0 = (β − 1)

(β + 1)

dθ1

dτ

[
1 + 3

4

β

(1 + β)

γ0

R̃
ε

+
(

9

16

β2

(1 + β)2

γ 2
0

R̃2
− 3

4

β

(1 + β)

γ1θ1

R̃

)
ε2 + O(ε3)

]
.

(16)

Since θ1 is periodic, 〈�̃0〉 = 0. However, the solution
to O(Re1

p) includes terms of the form θ1 d2θ1/dτ 2, which
yield a net angular velocity. If we consider the case θ1 =
Ã/(2R̃) sin τ , where Ã = A/a is the non-dimensional
amplitude of motion, the time-averaged non-dimensional
angular velocity becomes

〈�̃1〉 = ε2 γ1

48R̃3

β(β − 1)

(β + 1)2

[ (−β2 + 3β − 1
)

− 2
(
β9 + 1

)
(
β3 + 1

)3 sin2 θ0

]
Ã2 + O(ε3). (17)

It is noted that this non-dimensional velocity becomes zero
when θ0 = π/2, as this corresponds to the fore–aft symmetric
configuration in which the spheres are diametrally opposed.
The velocity becomes unboundedly large if R̃ remains constant
and θ0 → 0. In this limit, however, the spheres become
close and (17) is invalid. According to (17), the smaller
sphere advances in front for 1 < β < 1.74, while the larger
sphere advances in front for β > (3 + √

5)/2 ≈ 2.62. For
1.74 < β < 2.62, the direction of rotation depends on the
value of θ0.

In dimensional form, the net angular velocity is

〈�〉 = ωεRep〈�̃1〉 + O(ε4 Rep, Re2
p). (18)

Note that the rotator reduces to the previous example of two
unequal spheres moving along their line of centres for R̃ → ∞
with constant ε = 1/(2R̃ sin θ0). In this limit, sin θ0 → 0,
γ1 → 8R̃2, and the net linear velocities predicted by (11)
and (18) agree.

3.3. Translation of a scallop-like swimmer

We study the scallop-like swimmer schematized in figure 3.
The swimmer consists of two circular cylinders of radius a and
length L � a connected by a hinge. The angle between the
two cylinders, 2θ(t), is a prescribed periodic function of time

4
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Figure 3. Scallop-like swimmer consisting of two circular cylinders
of radius a and length L connected by a hinge at P.

Figure 4. Dependency of the net translational velocity on the average
angle of opening of the scallop-like swimmer, θ0.

with radian frequency ω. The swimmer undergoes an unknown
translational velocity, W (t), whose time average we want to
determine.

By neglecting hydrodynamic interactions between the
cylinders, the hydrodynamic forces exerted on each cylinder
are related to the velocities of the cylinder by the resistance
coefficients. The resistance coefficients for translation perpen-
dicular and parallel to the cylinder axis are R⊥ = 2R‖ =
4πμL/ ln(L/a) (see, e.g., [18]). Application of (3) in the z-
direction yields

m

[
dW

dt
+ d

dt

(
L

2

dθ

dt
sin θ

)]
Ŵ −

[(
−R‖Ŵ cos θ

)
W cos θ

+
(
−R⊥Ŵ sin θ

)
W sin θ

]
=
(
−R⊥Ŵ sin θ

) L

2

dθ

dt
,

(19)

where m = ρpπa2L is the mass of each cylinder. This
equation is made non-dimensional by using a and 1/ω as
length and timescales and by defining a non-dimensional time
τ ≡ ωt , cylinder length λ ≡ L/a, and velocity W̃ ≡
W/(ωL). Introducing these scalings into (19) and expanding
W̃ in powers of Rep ≡ ρpa2ω/μ � ε � 1 results in

Rep

(
dW̃0

dτ
+ · · ·

)
+ 2

lnλ

(
1 + sin2 θ

) (
W̃0 + RepW̃1 + · · ·

)

= − Rep

2

d

dτ

(
sin θ

dθ

dτ

)
− 2

lnλ
sin θ

dθ

dτ
. (20)

Figure 5. Undeformed (dashed line) and deformed (solid line)
geometry of the swimmer. The deformation is axisymmetric with
respect to the z-axis. Not to scale.

The solution to O(Re0
p) is

W̃0 = − sin θ

1 + sin2 θ

dθ

dτ
(21)

and 〈W̃0〉 = 0. Let us assume small oscillations of the form
θ(τ ) = θ0 + θ1(τ ) = θ0 + ε sin τ , where ε � 1. Then, the
solution to O(Re1

p) has a non-zero average given by

〈W̃1〉 = 1
2ε

2 ln(λ) f (θ0)+ O(ε2), (22)

where

f (θ0) = sin2 θ0 cos3 θ0(
1 + sin2 θ0

)3
. (23)

The dimensional net velocity is 〈W 〉 = RepωL〈W̃1〉+O(Re2
p).

The function f (θ0) is represented in figure 4. Since f (θ0) > 0
for all θ0 ∈ (0, π/2), 〈W̃1〉 > 0, and the swimmer moves with
the hinge advancing in front. The net velocity is maximum for
θ0 = arccos([−7/2 + √

73/2]1/2) ≈ 28.5◦.

3.4. Translation of a deforming sphere

A quasi-spherical swimmer of radius a executes a small,
periodic deformation, so that its radius is given by R(t, θ) =
a(1 + ε2α0(t)P0(cos θ) + εα1(t)P1(cos θ)), as shown in
figure 5. Here, P0 ≡ 1 and P1 ≡ cos θ are the Legendre
polynomials of orders 0 and 1, respectively, and ε � 1. The
coefficient of P0 is chosen as α0 = −α1/3 + O(ε4), so that the
particle volume remains constant and equal to 4πa3/3. The
deformation is axisymmetric with respect to the z-axis, and it
is such that the particle density, ρp, remains homogeneous and
constant.

To compute the translation of the sphere, we apply the z-
component of (3) to this swimmer, defining the reference point
P as the centre of the undeformed sphere. To evaluate the first
term on the left-hand side of (3), we write the velocity of the
centre of mass, G, as uG = uP + u′

G, where u′
G is the velocity

of G relative to P. The acceleration of G relative to P is

du′
G

dt
= a

d2α1

dt2

[
4

5
ε + O

(
ε3
)]
, (24)

5
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directed along the z-axis. The normal vector to the deformed
sphere’s surface in spherical coordinates (r, θ, φ) is

n =

⎛
⎜⎜⎝

1

[1+(dR/dθ)2/R2]1/2

−(dR/dθ)/R

[1+(dR/dθ)2/R2]1/2

0

⎞
⎟⎟⎠

=
⎛
⎝

1 − ε2α2
1 V 2

1 /2

εα1V1 − ε2α2
1 P1V1

0

⎞
⎠+ O(ε2), (25)

where we have used Lighthill’s [19] definition,

Vn(η) ≡ 2
√

1 − η2

n(n + 1)

dPn(η)

dη
, (26)

with η ≡ cos θ . To evaluate the two surface integrals in (3), we
must calculate the flow around the rigid, deformed sphere past
a uniform flow, Û . Any axisymmetric flow can be described
by the streamfunction

ψ =
∞∑

n=0

[
Anrn+3 + Bnrn+1 + Cnr 2−n + Dnr−n

]
Qn(η),

(27)
where An , Bn, Cn , and Dn are constants, and dQn(η)/dη =
Pn(η) (see, e.g., [20]). The radial and azimuthal velocity
components, ur and uθ , are given by

ur = − 1

r 2

∂ψ

∂η
(28a)

uθ = − 1

r
√

1 − η2

∂ψ

∂r
. (28b)

In our problem, in which the reference system is attached to
the swimmer, ur and uθ must tend to the ambient velocity,
of magnitude Û , as r → ∞. In addition, the solutions with
n = 0 are inadmissible, because the corresponding azimuthal
velocities are undefined at η = 1 (θ = 0). With these
constraints, the general solution of the flow field is

ur = −Û cos θ +
∞∑

n=1

(
An

an

rn
+ Bn

an+2

rn+2

)
Pn (29a)

uθ = Û sin θ +
∞∑

n=1

(
An

(n

2
− 1

) an

rn
+ Bn

n

2

an+2

rn+2

)
Vn,

(29b)
as obtained in previous studies of spherical swimmers [19, 21].
The constants are determined using the boundary conditions,
ur = uθ = 0, at r = R = a(1 + ε2α0 P0 + εα1 P1). These
constants can be expanded in powers of ε:

An =
∞∑

k=0

εk A(k)n (30a)

Bn =
∞∑

k=0

εk B(k)
n . (30b)

The solution is

A1 = Û
[

3
2 + ε2 3

2α0 + O(ε3)
]

(31a)

B1 = Û
[− 1

2 + ε2
(− 3

2α0 + 9
10α

2
1

)+ O(ε3)
]

(31b)

A3 = Û
[−ε2 9

10α
2
1 + O(ε3)

]
(31c)

B3 = Û
[
ε2 3

2α
2
1 + O(ε3)

]
, (31d)

while all other constants are at most of O(ε3). The value of the
pressure on the deformed sphere’s surface is

p(R) = μÛ

a

[
3

2
P1 − 3εα1 P2

1

+ ε2
(− 3

2α0 P1 + 9
2α

2
1 P3

1 − 9
4α

2
1 P3

)+ O(ε3)

]
. (32)

The radial and tangential stresses at r = R are

σrr |r=R = μÛ

a

[
−3

2
P1 − εα13P2

1

+ ε2
(

33
2 P3

1 + (
3
2α0 − 27

5 α
2
1

)
P1 + 237

20 α
2
1 P3

)+ O(ε3)

]

(33a)

σrθ |r=R = μÛ

a

[
3

2
V1 − εα16P1V1

+ ε2
(

27
2 α

2
1 P2

1 V1 + (− 3
2α0 − 27

10α
2
1

)
V1 − 153

10 α
2
1 V3

)

+ O(ε3)

]
(33b)

σθθ |r=R = μÛ

a

[
−3

2
P1 + εα16P2

1 + O(ε2)

]
. (33c)

Finally, the two surface integrals in (3) are

F̂z =
∫

S(t)
n · σ̂ · ẑ dS

=
∫ π

0
n ·

⎛
⎝ cos θσrr − sin θσrθ

cos θσrθ − sin θσθθ
cos θσrφ − sin θσθφ

⎞
⎠(2πR2 sin θdθ

)

= −6πμÛa
[
1 + ε2

(
α0 − 7

15α
2
1

)+ O(ε3)
]

(34)

∫
S(t)

n · σ̂ · u′ dS =
∫ π

0
n ·

⎛
⎝ σrr

σrθ

σrφ

⎞
⎠

a

(
ε2 dα0

dt
+ εP1

dα1

dt

)(
2πR2 sin θ dθ

)

= πμÛa2

[
−2ε

dα1

dt
+ ε3

(
−2α2

1

dα1

dt
− 2α0

dα1

dt

− 4α1
dα0

dt

)
+ O(ε4)

]
. (35)

Introducing these results into (3) yields, in non-dimensional
form,

4

3
Rep

dŨ

dτ
+ 6

[
1 + ε2

(
−1

3
α1 − 7

15
α2

1

)
+ O(ε3)

]
Ũ

= −2
dα1

dτ
+ ε2(−2α2

1 + 2α1)
dα1

dt
− 16

15
Rep

d2α1

dτ 2
+ O(ε3),

(36)

where τ ≡ ωt , U ≡ εωaŨ . Next, we expand Ũ = Ũ0 +
RepŨ1 + · · · and assume Rep � ε � 1. The solution to

6
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O(Re0
p) is

Ũ0 = −1

3

dα1

dτ
+ ε2

(
−22

45
α2

1 + 2

9
α1

)
dα1

dτ
+ O(ε3). (37)

For any periodic α1(τ ), the time average of this expression is
zero. Moreover, the time average is zero to all orders of ε.

The solution to O(Re1
p) includes terms of the form

ε2(dα1/dτ )2 and ε2α1(dα1/dτ )2, which, for a suitable choice
of α1(t), yield a non-zero average. For instance, for α1 =
sin2(ωt) = sin2 τ , the time-averaged non-dimensional velocity
is

〈Ũ1〉 = − 2
405ε

2 + O(ε3), (38)

or, in dimensional form,

〈U〉 = − 2
405 Repε

3ωa + O(ε4 Rep, Re2
p). (39)

Note that the minus sign indicates a net translation in the (−z)-
direction.

4. Conclusion

We have presented several examples of dense reciprocal
swimmers that are able to propel themselves, even in the
absence of fluid inertia, at arbitrarily small values of Rep. The
existence of a net swimming velocity arises from a nonlinear
interaction between the oscillatory particle inertia and the
oscillatory drag in the presence of spatial asymmetries. The
existence of this nonlinear interaction can be inferred from the
reciprocal theorem, (3). In the absence of rigid-body rotation,
(3) reads

(
m

duG

dt

)
· ÛP − F̂ · UP =

∫
S(t)

n · σ̂ ·u′ dS. (40)

F̂ , the hydrodynamic drag on the towed, deformed body, scales
as (μaÛP)(1 + A/a α(t)). Here, (μaÛP) is the magnitude of
the hydrodynamic drag on the towed, undeformed body, A is
the amplitude of oscillation of the swimmer surface, α(t) is
the non-dimensional oscillation, and a � A is the size of the
undeformed swimmer. The integral on the right-hand side is
typically of magnitude (μaÛP)(K1 + A/a K2α(t))u′, where
u′ = A dα(t)/dt is the magnitude of the deformational surface
velocity u′, and K1 and K2 are coefficients that account for
the change of magnitude and direction of u′ over the swimmer
surface. Also, uG ∼ UP ∼ Aω. Introducing these scalings
into (40) yields

Rep
dŨP

dτ
− (1 + εα(τ)) ŨP ∼ (K1 + εK2α(τ))

dα

dτ
, (41)

where ŨP is the non-dimensional translational velocity, τ ≡ ωt
is the non-dimensional time, and ε ≡ a/A � 1. By expanding
ŨP in powers of Rep, the equation to O(Re0

p) yields

ŨP,0 ∼ −[K1 + ε (K2 − K1) α(τ )+ O(ε2)]dα

dτ
, (42)

and 〈ŨP,0〉 = 0, in agreement with the scallop theorem. Next,
the equation to O(Re1

p) yields

ŨP,1 ∼ dŨP,0

dτ

[
1 − εα(τ)+ O(ε2)

]
. (43)

Thus, in the presence of certain spatial asymmetries, the right-
hand side of (43) contains a term of the form

ε

[
(K2 − 2K1) α(τ )

d2α

dτ 2
+ (K2 − K1)

(
dα

dτ

)2
]
. (44)

For an appropriate choice of the reciprocal oscillation α(τ)
(for example, a sinusoidal function), this term gives raise to
a non-zero net velocity to O(Re1

p). Accordingly, in the four
examples presented in this paper, the net translational velocity
is proportional to Rep. As discussed in section 2, a necessary
condition for the existence of this non-zero velocity is that the
dense swimmer undergoes deformation normal to its surface,
while pure squirming does not result in locomotion.

In the previous analysis we have not included the effect of
gravity, which needs to be considered in practical applications.
For A ∼ a and ε = O(1), we expect the net translational
velocity due to the reciprocal motion to scale as

〈Up〉 ∼ aωRep, (45)

while a typical sedimentation speed is

Ug ∼ ρpa2g

μ
. (46)

Thus, the dense swimmer needs to oscillate at a frequency
ω > O(

√
g/a) in order to overcome gravity.

In conclusion, our examples show the existence of a net
translation or rotation at any arbitrarily small Rep > 0 for
certain spatially asymmetric, dense reciprocal swimmers. This
demonstrates the breakdown of the scallop theorem for a case
in which the flow around the swimmer is governed by the
Stokes equations, that is, in the absence of fluid inertia. While
we have studied the limit of dense swimmers, for which ρp �
ρ, in many biological applications ρp ∼ ρ and the unsteady
fluid inertia is expected to be comparable to the particle inertia.
The extension of this study to the limit of Ref � Reω ∼ Rep

will be the subject of future work.
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