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Abstract

Coastal erosion and, more generally, evolution of the beach morphology are major coastal
engineering problems. Changes in beach morphology mostly occur in the nearshore region,
or surf zone. They are caused by the local imbalance of sediment transport, both in long-
and cross-shore directions. Cross-shore sediment transport is the small difference between
two large components: the on- and offshore transport rates. Both components must be very
accurately predicted in order to predict their difference with reasonable accuracy. The physics
of on- and offshore sediment transport is however not well understood, and the keystone in its
understanding is the characterization of the nearshore wave boundary layer. The goals of this
thesis are to investigate the hydrodynamics of nearshore wave boundary layers and to develop
an analytical model to predict cross-shore sediment transport rates, both in oscillating water
tunnels (OWTs, a commonly used type of experimental facility) and in the sea.

This thesis presents a simple conceptual model of the nearshore boundary layer mechanisms
responsible for sediment transport. Bed shear stresses are predicted by using a time-varying
friction factor. Bedload predictions by this simple model agree with sheet flow measurements if
the bed roughness is used as a fitting parameter. To overcome the need for a fitting parameter,
a detailed analytical model of the OWT boundary layer hydrodynamics, based on assuming a
certain spatial structure and temporal dependence of the eddy viscosity, is derived. The hydro-
dynamical predictions and the corresponding bedload sediment transport predictions by this
analytical model agree with the available sheet flow experimental data, with the bed roughness
being consistently characterized by the total mobile-bed roughness. Unlike the OWT case,
where waves do not propagate, waves in a flume or in the sea are propagating. We outline
the extension of the analytical model to propagating waves and quantify the hydrodynamical
and bedload sediment transport differences between propagating and non-propagating waves.
These differences are significant and need to be accounted for when interpreting OWT results.

Thesis Supervisor: Ole Secher Madsen
Title: Donald and Martha Harleman Professor of Civil and Environmental Engineering
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Nomenclature

β Bottom slope.

δc Current boundary layer thickness, taken as h/2 in an OWT.

δI Thickness of the inner wave boundary layer, taken as δw/6; see (3.22).

δJ Elevation above the bottom where the turbulence due to the current becomes dominant,
see (3.22).

δK Elevation above the bottom from which the eddy viscosity becomes constant and deter-
mined by the current, see (3.22).

δL Thickness of the inner current boundary layer, taken as δc/6; see (3.22).

δw Wave boundary layer thickness.

δw,MS Wave boundary layer thickness proposed by Madsen and Salles [46].

ε Dissipation of kinetic energy (in Section 2.2.1 only) or ratio between the third and first
harmonics of the near-bed velocity (in Chapters 3 and following).

κ Von Kármán constant (≈ 0.4).

λ Ratio between the amplitudes of the second and first near-bed velocity harmonics.

As Asymmetry parameter, see (2.33).

Sk Skewness parameter, see (2.34).

µ Ratio between the current and wave shear stresses.

νt Eddy viscosity.

νmolec Molecular kinematic viscosity.

ω Radian wave frequency.

τ b Time-averaged bed shear stress.

τ sw Time-averaged sidewall shear stress.

G Longitudinal pressure gradient.

ucl Time-averaged centerline velocity.

ν Time-averaged eddy viscosity.
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p Time-averaged pressure.

u Time-averaged velocity.

φm Angle of moving sediment friction.

φs Angle of static sediment friction.

Ψ Shields parameter.

Ψcr Critical Shields parameter for initiation of motion.

ρ Fluid density.

ρs Density of the sediment particles.

τ , τzx Dominant component of the turbulent shear stress in the boundary layer.

τ (1) Complex amplitude of the first harmonic of the wave shear stress.

τ (2) Complex amplitude of the second harmonic of the wave shear stress.

τ (3) Complex amplitude of the third harmonic of the wave shear stress.

τ1 First-harmonic wave shear stress.

τ
(1)
b Complex amplitude of the first harmonic of the wave bed shear stress.

τ
(2)
b Complex amplitude of the second harmonic of the wave bed shear stress.

τ
(3)
b Complex amplitude of the third harmonic of the wave bed shear stress.

τc Current shear stress.

τ
(2)
b,α Complex amplitude of the α-component of the second-harmonic bed shear stress, see

5.12.

τ
(2)
b,β Complex amplitude of the β-component of the second-harmonic bed shear stress, see

5.12.

τb1 First-harmonic bed shear stress.

τbc Current shear stress at the bottom.

τbm,2α Real amplitude of the α-component of the second-harmonic bed shear stress, see 5.12.

τbm,1 Real amplitude of the first harmonic of the bed shear stress.

τbm,2β Real amplitude of the β-component of the second-harmonic bed shear stress, see 5.12.

τbm,3 Real amplitude of the third harmonic of the bed shear stress.

τbwm Maximum onshore wave bed shear stress.

τbw Instantaneous wave bed shear stress.

τcr,β Critical shear stress for initiation of motion on a sloping bed.
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τcr Critical shear stress for initiation of motion on a flat bed.

ν̃e Even-harmonic, zero-mean component of the eddy viscosity.

ν̃o Odd-harmonic component of the eddy viscosity.

p̃e Even-harmonic, zero-mean component of the pressure.

p̃o Odd-harmonic component of the pressure.

ũe Even-harmonic, zero-mean component of the velocity.

ũo Odd-harmonic component of the velocity.

ϕ Phase shift between the maximum wave bed shear stress and the maximum near-bed
velocity.

ϕ1 Phase shift of the first harmonic of the bed shear stress, see (5.2).

ϕ3 Phase shift of the third harmonic of the bed shear stress, see (5.2).

ϕc Instantaneous bed shear stress phase shift corresponding to the near-bed wave velocity
crest.

ϕt Instantaneous bed shear stress phase shift corresponding to the near-bed wave velocity
trough.

ϕ2α Phase of the α-component of the second-harmonic bed shear stress, see (5.12).

ϕ2β Phase of the β-component of the second-harmonic bed shear stress, see (5.12).

ζ Nondimensional vertical coordinate.

ζ0 Nondimensional vertical location of the no-slip boundary condition.

A Coefficient in the wave boundary layer thickness definition, see (4.23).

a(1) Complex amplitude of the first harmonic of the eddy viscosity.

a(2) Complex amplitude of the second harmonic of the eddy viscosity.

Abm,1 Near-bed first-harmonic orbital amplitude.

AMS Coefficient A proposed by Madsen and Salles [46].

b Cross-sectional width of the OWT.

Dn Nominal diameter.

D50 Median diameter.

F (n) Complex solution of (3.25), given by (3.26).

f1 Friction factor for the first-harmonic bed shear stress, see (5.3).

f3 Friction factor for the third-harmonic bed shear stress, see (5.4).

fw Wave friction factor.
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fw(t) Time-dependent friction factor used in the conceptual model discussed in Chapter 2.

f2α Friction factor for the α-component of the second-harmonic bed shear stress, see (5.17).

f2β Friction factor for the β-component of the second-harmonic bed shear stress, see (5.18).

fave Friction factor corresponding to the average shear velocity.

fwc Instantaneous friction factor at the near-bed wave velocity crest.

fwt Instantaneous friction factor at the near-bed wave velocity trough.

H Wave height.

h Local water depth (in Chapter 2) or cross-sectional height of the flow area of the OWT
(in Chapters 4 and 5).

H0 Deep water wave height.

Hl Wave height of the equivalent linear wave.

k Turbulent kinetic energy (in Section 2.2.1 only) or wavenumber (elsewhere).

kn Nikuradse’s equivalent sand-grain roughness.

k′n Equivalent numerical roughness used in Section 2.2.4.

L Distance from the OWT bottom at which the mean velocity matches the centerline
velocity. This length defines the cross-sectional region governed by bottom effects, see
Figure 4-1.

l Wave boundary layer length scale. The wave boundary layer thickness is computed as
δw = Al.

L0 Deep water wavelength.

lτ (t) Time-dependent time lag between bed shear stress and near-bed velocity used in the
conceptual model discussed in Chapter 2.

lτc Instantaneous bed shear stress time lag corresponding to ϕc.

lτt Instantaneous bed shear stress time lag corresponding to ϕt.

P Production of kinetic energy (in Section 2.2.1) or correction exponent in Grant and
Madsen’s wave-current model (in Appendix B).

p Pressure.

qsw Volume flux in the sidewall-dominated region of an OWT per unit height of sidewall.

s Ratio between the sediment and the fluid densities, ρs/ρ.

T Wave period.

Tc Characteristic trough-to-crest wave period (see Figure 2-1).

Tt Characteristic crest-to-trough wave period (see Figure 2-1).
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Tcp Characteristic zero-upcrossing-to-crest wave period (see Figure 2-1).

Ttn Characteristic zero-downcrossing-to-trough wave period (see Figure 2-1).

U Potential flow horizontal wave velocity, taken positive in the direction of decreasing mean
pressure gradient (in an OWT) or in the direction of wave propagation (in a wave flume
or in the sea).

u Instantaneous horizontal velocity, taken positive in the direction of decreasing mean
pressure gradient (in an OWT) or in the direction of wave propagation (in a wave flume
or in the sea).

u(1) Complex amplitude of the first harmonic of the horizontal velocity.

u(2) Complex amplitude of the second harmonic of the horizontal velocity.

u(3) Complex amplitude of the third harmonic of the horizontal velocity.

U
(1)
∞ Complex amplitude of the first harmonic of the near-bed velocity.

U
(2)
∞ Complex amplitude of the second harmonic of the near-bed velocity.

Ub Near-bed wave velocity height (see Figure 2-1).

ub Instantaneous near-bed (free-stream) horizontal wave velocity.

uc Near-bed wave velocity at the crest (see Figure 2-1).

ut Near-bed wave velocity at the trough (see Figure 2-1).

u∗m Shear velocity based on the maximum combined (wave-current) shear stress.

u∗wc Shear velocity based on the time-averaged combined (wave-current) shear stress.

u∗wm Wave shear velocity based on the maximum wave shear stress.

u∗w Wave shear velocity based on the time-averaged wave shear stress.

uref Reference (measured) current velocity.

ub1 First harmonic of the near-bed velocity.

ub2 Second harmonic of the near-bed velocity.

Ubl Near-bed wave velocity height of the equivalent linear wave.

ubm,1 Real amplitude of the first harmonic of the near-bed velocity.

ubm,2 Real amplitude of the second harmonic of the near-bed velocity.

ubm Near-bed (free-stream) maximum onshore wave velocity.

W Potential flow vertical wave velocity, taken positive upwards.

w Instantaneous vertical velocity, taken positive upwards.

ws Sediment fall velocity.
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X Relative roughness.

z0 Vertical location of the no-slip boundary condition.

z1 Elevation of the upper boundary in the numerical model (Chapter 2), where the velocity
profile is assumed to converge to the potential flow solution (i.e., the near-bed wave
velocity).

zref Elevation above the bottom at which the current velocity is equal to uref .

OWT Oscillating water tunnel.

26



Chapter 1

Introduction

Evolution of beach morphology and, more specifically, erosion processes are major concerns
in coastal engineering. Changes in beach morphology are caused by the local imbalance of
sediment transport, both in long-shore direction (parallel to the shoreline) and cross-shore
direction (along the beach profile).

Tajima and Madsen [64, 66] developed a predictive nearshore hydrodynamics and sediment
transport model for long, straight beaches. This model successfully predicts long-shore sediment
transport, while it does not succeed in predicting cross-shore sediment transport. This is
attributed to an overly simplistic computation of the bed shear stress. Net cross-shore sediment
transport under waves is the small difference between two large components: the onshore and
offshore transport rates. Both components must be computed very accurately in order to predict
the difference with reasonable accuracy. Sediment transport crucially depends on the bed shear
stress, as the net transport rate is very sensitive to small changes in the shear stress. Tajima and
Madsen’s previous approach to compute the bed shear stress, based on using a constant friction
corresponding to an equivalent sinusoidal wave, is not accurate enough for sediment transport
calculations. For example, it is an experimentally known fact that a forward-leaning asymmetric
wave produces a net onshore bedload transport [37, 72]. However, a purely asymmetric wave
has equal an opposite onshore and offshore near-bed velocities, and thus an approach based
on a constant friction factor predicts a zero net bedload transport, in contradiction with the
observations. It is therefore necessary to more carefully characterize the bed shear stresses in
the boundary layer of nearshore waves.

While undertow and bottom slope effects are the principal agents for offshore transport,
onshore sediment transport under waves remains largely unexplained. Several physical mecha-
nisms for onshore transport have been identified (see discussion in References [19] and [27]), the
most relevant of which appear to be the neashore wave shape and the boundary layer streaming.
Bed slope effects, that usually decrease the onshore transport (due to gravitational effects), also
need to be accounted for.

Nearshore waves are asymmetric and skewed. A wave with positive asymmetry has a
forward-leaning shape, with a steep frontal face and a gentle rear face. A wave with posi-
tive skewness has a peaked, narrow crest and a flat, wide trough. Nearshore waves have both
positive asymmetry and skewness. As waves shoal, they first become skewed. Once waves
approach breaking and enter the surf zone, they become strongly asymmetric, as illustrated in
Figure 1-1.

Based on experimental observations of asymmetric waves by King [37], Nielsen identified

27



Skewed SinusoidalAsymmetric

Figure 1-1: Schematic representation of wave shoaling and nearshore wave shape. Deep-water
sinusoidal waves become skewed as they shoal and then asymmetric once they enter the surf
zone. Waves propagate from right to left. Figure adapted from Reference [72].

the importance of fluid acceleration in asymmetric waves [51, Section 2.4.4]. For a forward-
leaning wave, the onshore velocity increases in magnitude faster than the offshore velocity,
and the associated boundary layer has a shorter time to develop. Thus, the onshore velocity
generates a thinner boundary layer and therefore a larger bed shear stress. To account for this
effect, Nielsen proposed an empirical formula that sets the Shields parameter to be a sum of
two terms [51]. One term is a function of the near-bed (free-stream) velocity and the other
is a function of the near-bed acceleration. The weighting of each term is determined by an
adjustable model parameter. Sediment transport is calculated using Meyer-Peter and Muller’s
bedload formula [50]. Modifications of the Shields parameter formula were later introduced by
Nielsen and coauthors to account for the turbulent behavior of the boundary layer [52] and
for boundary layer streaming [54]. In a recent contribution [53], Nielsen calibrates the model
parameter so that his sediment transport predictions agree with recent asymmetric laboratory
wave data [72].

Drake and Calantoni carried out computationally intensive discrete particle simulations of
sheet flow transport in oscillatory flows, which supported a different interpretation of the fluid
acceleration effects [13]. According to their interpretation, differences in acceleration between
the front and the back of an asymmetric wave yield horizontal pressure gradients in the boundary
layer, which act on the near-bed fluid and sediment. To describe this effect, they suggested the
use of an acceleration skewness parameter, aspike = 〈a3〉/〈a2〉, where a is the time series of the
near-bed fluid acceleration and the angle brackets denote a time average. Using this acceleration
descriptor, Hoefel and Elgar [29] modified Bailard’s sediment transport model [3] to include a
term that accounts for fluid accelerations and used this model to successfully predict an episode
of onshore bar migration. However, to achieve agreement with observations, Hoefel and Elgar
adjusted the acceleration parameters by a factor of 5 relative to the values originally suggested
by the discrete particle model of Drake and Calantoni.

Boundary layer streaming is another relevant mechanism of onshore sediment transport. It
is noted that boundary layer streaming is a different phenomenon from the Stokes drift, which
induces a net shoreward velocity near the free surface and a seaward undertow near the bed.
Under a propagating wave, transfer of momentum from the potential flow to the boundary
layer causes a shoreward mean flux or streaming, as discussed by Longuet-Higgins [39] (see
also appendix to Reference [62]). This streaming arises from an interaction between the near-
bed horizontal and vertical velocities, as explained in what follows. The horizontal pressure
gradient generated by the waves, which is almost constant over the boundary layer thickness,
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can more quickly overturn the small velocities close to the bottom, where the fluid momentum
is smaller. This causes a phase shift between the boundary layer and the free-stream velocities,
with the boundary layer velocity being in advance of the free-stream velocity. As a result of this
phase shift, the boundary layer velocity relative to that of the potential flow is directed onshore
before a wave crest, while it is directed offshore after the crest has passed (see Figure 1-2). This
relative boundary layer motion produces a piling-up of mass under the trough [62] which, by
continuity, induces a downward vertical velocity. This downward velocity at the crest carries
shoreward momentum from the potential flow into the boundary layer. Similarly, at the wave
trough, seaward momentum is ejected from the boundary layer to the potential flow. This net
transfer of shoreward momentum into the boundary layer causes a shoreward boundary layer
streaming, which has a potentially important effect on the onshore sediment transport.

Figure 1-2: Diagram showing the origin of the vertical motion in a propagating wave boundary
layer. In the figure the wave propagates from left to right, and the arrows marked with u indicate
the direction of the horizontal potential flow velocity, the M -arrows indicate the boundary layer
velocity relative to the potential flow, and the v-arrows indicate the induced vertical motion.
This vertical motion is responsible for the momentum transfer to the boundary layer which
causes the boundary layer streaming. Figure reproduced from Reference [62].

Trowbridge and Madsen identified another streaming mechanism due to the time-varying
nature of the wave turbulent boundary layer flow [69]. The time variation of the bed shear
stress induces a time variation of the eddy viscosity, which scales as the square root of the
absolute value of the bed shear stress. If the wave is not sinusoidal in shape or if a current is
present, the asymmetry of the resulting bed shear stress induces a first-harmonic eddy viscosity.
This first-harmonic eddy viscosity interacts with the first-harmonic velocity to produce a mean
shear stress and a mean flow (streaming). This streaming mechanism acts in addition to that
due to wave propagation. Near the bottom, Trowbridge and Madsen’s (TM) streaming is often
directed seawards, thus counteracting the shoreward Longuet-Higgins’s (LH) streaming due to
wave propagation.

The relative importance of these two kinds of streaming depends on the wavelength [69]. For
short waves, where the velocity field changes quickly along the direction of wave propagation,
LH streaming is expected to dominate. For very long waves, the velocity field barely changes
in space, and the LH streaming has little importance.

Many experimental studies of nearshore sediment transport have been conducted in oscillat-
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ing water tunnels (see Reference [71] for a summary of available experimental data). Oscillating
water tunnels (OWTs) are commonly used experimental facilities in coastal engineering research
that attempt to reproduce near-bed hydrodynamic and sediment transport phenomena at a re-
alistic scale. In an OWT, a piston produces an oscillatory motion that propagates almost
instantaneously to the whole tunnel. Consequently, unlike the wave motion in the sea or in
a wave flume, flow in an OWT is uniform along the tunnel. This would correspond to the
limit of a very long wave, in which LH streaming is absent. TM streaming, however, will be
present as long as the flow does not consist of pure sinusoidal waves. Indeed, Ribberink and Al
Salem measured this streaming in experiments involving skewed waves in the Delft OWT [61].
The OWT streaming was found to be directed seawards near the bottom and shorewards far
from the bottom. The near-bottom behavior is explained by Trowbridge and Madsen’s results;
however, previous efforts to accurately describe the complete measured mean velocity profile
failed. Davies and Li modeled the hydrodynamics of Ribberink and Al Salem’s experiment
numerically by using a one-equation turbulence model [7]. Then, they fitted the value of the
mean horizontal pressure gradient to match the observed mean velocity at z = 8.9 cm above
the bottom. This approach yields good agreement with the measurements for z ≤ 9 cm, but
a severe overprediction of the mean velocities for z > 9 cm (see their Figure 6). Further, their
resulting mean profile does not satisfy the zero total flux condition. Davies and Li conclude that
the streaming affects the predicted bedload transport by a factor of 2. Bosboom and Klopman
also attempted to model the OWT streaming numerically, with a k-ε turbulence closure [4].
Analogous to Davies and Li, they prescribed the measured mean velocity at z = 20 cm above the
bed, which again leads to unrealistically large velocities above this reference elevation (see their
Figure 6). Holmedal and Myrhaug followed a similar procedure as Bosboom and Klopman’s
and obtained a similar result [30]. They attributed the disagreement between predictions and
observations to sidewall effects, which are disregarded in their solution. Thus, these previous
attempts only partially succeed in explaining the observed streaming, and the understanding of
the OWT hydrodynamics remains incomplete. A complete model of the OWT boundary layer
hydrodynamics is crucial to understand how OWT conditions differ from real waves and how
to appropriately use the OWT experimental results in modeling cross-shore sediment transport
processes.

Most of the available laboratory sediment transport data correspond to sheet flow, a high
Shields parameter transport regime in which a cloud of sediment is transported over an es-
sentially flat bed. As shown in several sheet flow studies, the total hydraulic roughness that
parameterizes the near-bed velocity is larger than the sediment diameter [e.g., 11, 32]. While
the hydraulic sheet flow roughness is parameterized by the total mobile-bed roughness, this is
not necessarily the effective roughness with which to compute the bed shear stress responsible
for transport. For example, accurate predictions of transport over rippled beds have been ob-
tained by using kn = D50, instead of the total rippled bed hydraulic roughness [45]. By analogy,
it is conceivable that the effective bed shear stress that is responsible for sheet flow sediment
transport is only a fraction of the total bed shear stress. The appropriate choice of sheet flow
roughness to compute this effective bed shear stress remains an open question: some authors
use the total hydraulic roughness [32, 59] while others use an effective bed roughness of the
order of the sediment diameter [30, 53].

Many existing models to compute nearshore sediment transport are based on semi-empirical
formulations involving parameters fitted to the data, such as the work by Nielsen [51, 52, 53, 54].
Other models rely on intensive numerical methods simulations, such as discrete particle models
[e.g., 5, 13], k-ε turbulence boundary layer models [e.g., 27, 30], and two-phase models [e.g., 33,
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38]. While the latter detailed models provide valuable understanding of the nearshore transport
processes, they are too computationally demanding for practical prediction of the beach profile
evolution. Due to the interplay between hydrodynamics and beach morphology, which changes
in time, cross-shore sediment transport models need to be applied iteratively to account for
the evolving beach profile. Therefore, numerical models that typically take minutes, hours, or
even days to compute the instantaneous cross-shore sediment transport rates are impractical.
Previous analytical approaches include the work of Madsen and collaborators, summarized
in Reference [44], and Foster at al.’s analytical boundary layer solution for arbitrary wave
conditions, in which they used a time-varying eddy viscosity (analogous to that of Trowbridge
and Madsen [68, 69]) and studied the first- and third-harmonic hydrodynamics of skewed and
asymmetric waves and its implications to sediment transport computation [18].

The goals of this thesis are to (1) understand and analytically characterize the physical
mechanisms that govern the nearshore wave boundary layer hydrodynamics and (2) use this
characterization to predict cross-shore sediment transport (specifically, in this thesis, only bed-
load is considered). We seek to develop a process-based boundary layer and sediment transport
model (based on a physical understanding of the processes involved) that yields analytical,
closed-form solutions (so that the model is very computationally efficient) and that is free of
fitting parameters determined from the data we try to predict (so that the model is truly pre-
dictive). The model presented here will be validated against experimental data from OWTs. In
order to capture the physics of an OWT, the model assumes the waves to be non-propagating.
As a result, our model will explain the hydrodynamical behavior of OWTs, including the ob-
served OWT boundary layer streaming. Application of the model to predict sheet flow sediment
transport will determine the appropriate choice of effective bed roughness. We will also discuss
the differences in hydrodynamic behavior between an OWT and a propagating wave in the sea.

In Chapter 2 we discuss the physics of nearshore wave boundary layers and present a simple
conceptual model to estimate the bed shear stress. The conceptual model is used to predict
bedload transport under asymmetric and skewed waves. An extension of the model to the case
of waves combined with a current is also presented. Transport rates predicted by the model are
compared to experimental measurements, and the appropriate determination of the effective
sheet flow bottom roughness for sediment transport calculations is discussed.

In Chapter 3 we develop an analytical characterization of the boundary layer flow in an
OWT under asymmetric and skewed waves (characterized by its two first Fourier harmonics)
plus a weak collinear current. The goal of this analysis is to obtain a more accurate bed shear
stress description than that afforded by the simpler conceptual model. Closed-form solutions
for the boundary layer velocity field (including the streaming) and the bed shear stress are
obtained.

In Chapter 4 the hydrodynamical characterization of the OWT is completed by accounting
for the effect of the cross-sectional geometry and the prescribed cross-sectional flux. These
constraints need to be accounted for to accurately characterize the OWT flow near the bottom.
Using this analysis we explain the complete OWT streaming profiles profiles without fitting
the model to any measured values. To the author’s knowledge, this thesis presents the first
successful and fully-predictive explanation of the streaming profiles measured by Ribberink and
Al Salem [61].

In Chapter 5 the analytical solution for the bed shear stress is applied to compute bedload
under skewed waves, asymmetric waves, sinusoidal waves on a sloping bottom, and sinusoidal
waves plus a current. Model predictions and experimental measurements are compared. Using
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the results of these comparisons, we determine how the effective sheet flow bed roughness for
sediment transport calculations should be obtained. To simplify the application of the analytical
results, we also present simple approximate expressions to compute the bed shear stress as a
function of fitted friction factors and phase shifts.

Chapter 6 outlines the analytical characterization of the boundary layer hydrodynamics
under propagating waves, similar to that of Trowbridge and Madsen [68, 69]. The relative
importance of the different components of the streaming (LH streaming and TM streaming) is
discussed, and the effect of wave propagation on bedload due to skewed and asymmetric waves
is estimated. These results are used to quantify the differences in hydrodynamics and sediment
transport due to non-propagating waves (such as in an OWT) and to propagating waves (in a
wave flume and in the sea).
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Chapter 2

Conceptual model of the nearshore
wave boundary layer

In this chapter we present a simple conceptual model to compute bed shear stress under asym-
metric and skewed waves. The model is physically based, free of adjustable parameters, and
computationally efficient. We validate the model against a computationally intensive standard
boundary layer model with a k-ε turbulence closure. Since sediment transport of coarse grains
(which is bedload dominated) can be accurately parameterized in terms of the seabed shear
stress [33], accurate prediction of the bed shear stress suffices to compute bedload. Predictions
of bedload under asymmetric and skewed waves based on our conceptual model are then suc-
cessfully compared with oscillating water tunnel (OWT) measurements in the sheet flow regime.
However, when we try to extend the conceptual model to the general case of combined waves
and currents, we discover that, without the use of calibrated parameters, this simple conceptual
model is unable to yield good predictions for cases with and without currents.

The material presented in this chapter has been published in References [22] and [23]. The
notation has been slightly modified for consistency with that used in the rest of the thesis, and
some typos in the published versions have been corrected.

2.1 Conceptual model of the seabed shear stress

The maximum bed shear stress under sinusoidal waves, τbm, can be written as [35]

τbwm =
1
2
ρfwu2

bm, (2.1)

where ρ is the water density, fw is the wave friction factor for sinusoidal waves, and ubm is the
maximum near-bed wave orbital velocity. For symmetric and non-skewed waves, fw is assumed
a constant determined by wave and sediment characteristics. Based on the linearized boundary
layer equations and assuming a time-invariant, linearly varying eddy viscosity, Madsen obtained
an implicit equation for fw. He approximated the solution to this equation by the following
explicit formulas [43]:

fws =
{

exp
(
7.0X−0.078 − 8.8

)
for 0.2 < X < 102

exp
(
5.6X−0.109 − 7.3

)
for 102 < X < 104 (2.2)
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with
X =

ubm

knω
, (2.3)

where kn is the equivalent Nikuradse sand-grain roughness of the bed, and ω is the wave radian
frequency. The phase shift between bed shear stress and near-bed wave orbital velocity, ϕ (in
radians), can be approximated by [43]

ϕ =
π

60
(11− 2.0 log10 X) for 0.2 < X < 103. (2.4)

Often, (2.1) is generalized to describe the instantaneous wave bed shear stress, τbw(t), as a
function of the instantaneous near-bed wave orbital velocity, ub(t) [e.g., 32, 45, 59]:

τb(t) =
1
2
ρfwub(t + lτ )|ub(t + lτ )|, (2.5)

where lτ = ϕ/ω is the time lag between the bed shear stress and the near-bed velocity.

In this chapter we extend this formulation to asymmetric and skewed waves. The profile
of the corresponding near-bed orbital velocity, ub(t), is characterized by the parameters uc, ut,
Tc, Tt, Tcp, and Ttn, as illustrated in Figure 2-1.

t

Tcn /4

ut

uc

Tcp/4 Ttp /4 Ttn /4

Tc /2 Tt /2
T

ub(t) 

Ub

A

B

C

D

A

Figure 2-1: Near-bed wave orbital velocity of an asymmetric and skewed wave. Positive velocity
is directed onshore.

To extend (2.5) to asymmetric and skewed waves, the friction factor must vary with time.
Otherwise, a purely asymmetric wave with zero skewness would lead to a non-skewed bed shear
stress and yield zero net bedload transport, which contradicts observations [e.g., 72]. The use
of a variable friction factor over the wave period is justified by examining the physics of the
boundary layer.

Consider the near-bed orbital velocity of an asymmetric and skewed wave, ub(t), represented
in Figure 2-1. When the near-bed orbital velocity turns onshore (point B), a wave boundary
layer starts to develop. To be precise, this development starts slightly before B, due to the time
lag between τb(t) and ub(t). By neglecting the velocity history before the zero velocity at B, the
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development of the boundary layer from B to C can be assumed similar to that induced by a
quarter of a sinusoidal wave of velocity amplitude uc and period Tcp. Therefore, the maximum
shear stress near the wave crest can be approximated by

τbwm =
1
2
ρfwcu

2
c , (2.6)

where fw,c is the friction factor corresponding to a sinusoidal wave of period Tcp and velocity
amplitude uc. This friction factor is given by (2.2) with X = (ucTcp)/(2πkn). Similarly, the
phase shift at the crest, φτ,c, can be approximated using (2.4). The corresponding time lag is
lτc = ϕcTcp/(2π).

When the near-bed orbital velocity changes direction again (point D) the boundary layer
associated with the onshore velocity disappears. However, shortly before this happens, a new
boundary layer associated with the negative near-bed orbital velocity starts to develop. Anal-
ogous to (2.6), the minimum shear stress near the wave trough can be approximated by

τbw,min = −1
2
ρfwtu

2
t , (2.7)

where fwt is the friction factor corresponding to a sinusoidal wave of period Ttn and velocity
amplitude ut. The friction factor, fwt, and the phase shift, ϕt, are given by (2.2) and (2.4),
respectively, with X = (utTtn)/(2πkn). The time lag is lτt = ϕtTtn/(2π).

The bed shear stress over the wave cycle is then approximated by

τbw(t) =
1
2
ρfw(t)ub(t + lτ (t))|ub(t + lτ (t))|, (2.8)

where the time-varying friction factor, fw(t), and the time-varying lag, lτ (t), are assumed to be
the linear interpolation in time between the values calculated at the wave crest (fwc and lτc)
and trough (fwt and lτt). A similar parameterization, using different friction factors at crest
and trough but without a continuous time variation was proposed by Silva and coauthors [63].

The application of this simple conceptual model to predict bed shear stresses of real waves
relies on our ability to estimate the shape of ub(t). In particular, it is necessary to estimate the
parameters uc, ut, Tc, Tcp, and Ttn, represented in Figure 2-1. From the results of numerical
simulations using a Boussinesq model and using the concept of an equivalent linear wave (a
linear wave with the same energy flux as the actual nonlinear wave, see References [64] and [65]
for a detailed discussion), Tajima and Madsen developed a set of relationships that predict four
of these five parameters as a function of the local water depth, bottom slope, wave height, and
period. These relationships, using the notation of Figure 2-1, are [64, 65]

H/Hl = 1 + a1 exp {−a2(h/L0)} (2.9)
a1 = [2.2 + 2 tanh(55 tanβ)] tanh

{[
1.6(tanβ)−1.5 + 25

]
(H0/L0)

}

+30(tanβ)0.1(H0/L0)
a2 = 9.5(H0/L0)−0.5 + 10

Ub/Ubl = 1− b1 exp {−b2(h/L0)}+ b3 exp {−b4(h/L0)} (2.10)
b1 = 5.4(H0/L0)0.75

b2 = 80(H0/L0)−0.1 − 90
b3 = 49 [(95 + 1100 exp{−60 tanβ}) (H0/L0)]

2

exp
{
−4

√
(95 + 1100 exp{−60 tan β}) (H0/L0)

}

b4 = 8(H0/L0)−0.5
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Tc/T = 1− c1 exp {−c2(h/L0)} (2.11)
c1 = (66 + 220 exp{−30 tanβ}) (H0/L0) + 1.4 exp{−8.7 tanβ}
c2 = 40 + 60 ∗ exp{−30 tan β}+ 0.3(H0/L0)−0.8

Tcp/T = 1− c3 exp {−c4(h/L0)} (2.12)
c3 = 1 + 28(H0/L0) + (0.2− 0.8 tanh(10 tanβ)) exp{−300(H0/L0)}
c4 = 30 + 0.3(H0/L0)−0.8

uc/Ub = 0.5 + d1 exp {−d2(h/L0)} (2.13)
d1 = exp {− exp [−1.3− 3.6 exp(−30 tan β)]}

exp {[−0.3− 0.25 exp(−10 tanβ)] ln(H0/L0)}
d2 = exp {2.4− 0.5 exp [−45 tanβ]} (H0/L0))−[0.18+0.24 exp(−25 tan β)],

where H is the wave height, Hl is the wave height of the equivalent linear wave, Ub is the
near-bed wave velocity height (see Figure 2-1), Ubl is the near-bed wave velocity height of the
equivalent linear wave, L0 is the deep water wavelength, h is the local water depth, and tanβ is
the local bottom slope. Assuming that H, T , h, and β are known, (2.9) is first used to determine
Hl. Then, linear theory is applied to obtain H0 and L0. Finally, (2.10) to (2.13) are used to
characterize the shape of ub(t). The only parameter not provided by Tajima and Madsen’s
relationships is Ttn, but this parameter can be estimated by assuming a shape of the near-bed
orbital velocity constrained by the four known parameters plus the zero net flux condition, as
explained in Section 2.2.4. Recently, Elfrink and coauthors derived a set of empirical formulas
that yield all five parameters as a function of the same local characteristics as Tajima and
Madsen’s relationships [15].

2.2 Numerical model of the boundary layer

To assess the accuracy of the conceptual model presented in Section 2.1, we compare its bed
shear stress predictions with those of a numerical model of the boundary layer with a k-ε
turbulence closure. The numerical model, here applied to the simple case of periodic waves
with no mean current, is similar to Holmedal et al.’s model [31].

2.2.1 Governing equations

To the leading order of approximation, the momentum equation in the turbulent wave boundary
layer reads

∂u

∂t
=

∂ub

∂t
+

∂

∂z

(
τzx

ρ

)
, (2.14)

where u(z, t) is the horizontal velocity, ub(t) is the near-bed (free-stream) wave orbital velocity,
and z is the vertical coordinate measured positively upward. The shear stress, τzx(z, t), is
related to the velocity through

τzx = ρνt
∂u

∂z
, (2.15)

where νt is the eddy viscosity. To make the problem solvable, the eddy viscosity must in turn
be related to the other variables through a closure model.
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Following recent studies [27, 31], we adopt the k-ε model [e.g., 57, pp. 373–382] as the
closure. The transport equation for the turbulent kinetic energy, k, is

∂k

∂t
=

∂

∂z

(
νt

σk

∂k

∂z

)
+ P − ε, (2.16)

where P = νt(∂u/∂z)2 is the production of kinetic energy, and ε, the dissipation of kinetic
energy, is governed by the transport equation

∂ε

∂t
=

∂

∂z

(
νt

σε

∂ε

∂z

)
+ cε1

Pε

k
− cε2

ε2

k
. (2.17)

The eddy viscosity, νt, is calculated as

νt = cµ
k2

ε
. (2.18)

The standard values of the model constants are cµ = 0.09, cε1 = 1.44, cε2 = 1.92, σk = 1.00,
and σε = 1.30 [e.g., 57, p. 375].

2.2.2 Boundary conditions

Since the seabed is irregular, the definition of the bed elevation, z = z0, is arbitrary. We
adopt the conventional definition z0 = kn/30, where kn is the equivalent Nikuradse sand-grain
roughness of the bed.

At the bed, the no-slip condition requires the velocity to vanish, i.e.,

u = 0 at z = z0. (2.19)

The bed boundary conditions for k and ε are usually determined by assuming a logarithmic ve-
locity profile and imposing equilibrium between production and dissipation of turbulent kinetic
energy [e.g., 31], which yields

k =
νt

∣∣∂u
∂z

∣∣
√

cµ
(2.20)

and

ε = (cµ)3/4 k3/2

κz0
(2.21)

at z = z0. Note that, under the assumption of a logarithmic velocity profile, (2.20) and (2.21)
imply

νt = κu∗wz (2.22)

at z = z0, where κ is the Von Kármán constant (≈ 0.4), u∗w =
√
|τbw(t)|/ρ is the wave shear

velocity, and τbw(t) = τzx(z = z0, t) is the wave bed shear stress. Therefore, the standard
bed boundary condition of the k-ε turbulence model relies on the same linear eddy viscosity
hypothesis as Trowbridge and Madsen’s model [68].

The top boundary conditions should be applied at a height equal to the wave boundary
layer thickness, δw. The thickness of the boundary layer varies over the wave period, making
its definition somewhat arbitrary. However, we note that the vertical scale of the potential
flow above the boundary layer is much larger than the boundary layer thickness. Therefore,
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when modeling the boundary layer, the potential flow can be considered constant in z. The
model will thus perform correctly by imposing the top boundary conditions at z = z1, where
z1 > δw but of the same order of magnitude. This guarantees that the boundary layer effects
have vanished at the top of the domain.

An estimate of the maximum value of δw is given by the time-invariant thickness suggested
by Madsen and Salles [46]:

δw,MS = AMS
κu∗m

ω
, (2.23)

where

AMS = exp

{
2.96

(
Ub/2
knω

)−0.071

− 1.45

}
, (2.24)

u∗wm =
√

τbm

ρ
, (2.25)

Ub is the near-bed orbital velocity height, and τbwm = 1/2ρfw(Ub/2)2, with fw being the
constant friction factor defined in (2.2). In the numerical model, we adopt

z = z1 = 10 δw,MS (2.26)

as the top boundary for the simulation.

The boundary conditions at z = z1 are given as follows. The velocity is equal to the known
near-bed wave orbital velocity, i.e.,

u = ub at z = z1. (2.27)

Following similar studies [31], we impose zero flux condition for k and ε, i.e.,

∂k

∂z
= 0 at z = z1 (2.28)

and
∂ε

∂z
= 0 at z = z1. (2.29)

2.2.3 Numerical implementation

The boundary layer flow is governed by (2.14), (2.16), and (2.17), with the eddy viscosity
defined by (2.18), the boundary conditions specified in Section 2.2.2, and a prescribed near-bed
wave orbital velocity. The numerical implementation is carried out using finite difference.

For computational reasons, it is convenient to stretch the vertical coordinate, so that there
are more grid nodes close to the bed, where the velocity varies rapidly with height. We apply
the following log-linear stretching [8]:

ζ =
1
χ

{
ln

(
z

z0

)
+

(
z − z0

z∗

)}
, (2.30)

where

χ = ln
(

z1

z0

)
+

(
z1 − z0

z∗

)
, (2.31)
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and we adopt z∗ = (z0 + z1)/2. With ζ taking on equally spaced values between 0 and 1, the
previous transformation provides a conveniently distributed set of values of the elevation, z. As
a consequence of this stretching, ∆z is not constant in the finite difference grid. The nodes of
the spatial discretization are referred to by the index i = 1, 2, 3, ..., N .

Note that the system of differential equations (2.14, 2.16, and 2.17) is nonlinear. The
discretization of the nonlinear system of differential equations using a Crank-Nicholson finite
difference scheme [e.g., 17, pp. 54–57] yields a nonlinear system of algebraic equations. This
system relates the unknown values of u, k, and ε for each node of the spatial grid at time
(j + 1)∆t to the known values of the variables at time j∆t. To linearize the system, we apply
Newton-Raphson’s method [e.g., 58, pp. 372–375]. In this method, the values of u, k, and ε
at time (j + 1)∆t are determined through iteration, n = 1, 2, 3, . . .. The velocity at the spatial
node i and time (j + 1)∆t, ui,j+1, is determined iteratively from

un+1
i,j+1 = un

i,j+1 + δun
i,j+1, (2.32)

where δun
i,j+1 is an unknown small amount (¿ un

i,j+1). The initial value for this iterative
relationship is u1

i,j+1 = ui,j . With (2.32) and similar expressions for k and ε, and neglecting
products of δ-increments, we obtain a linear system of equations in the increments, which is
solved for each iteration.

The initial conditions are defined at the near-bed velocity crest by assuming a log-profile
steady velocity and corresponding values of k and ε. Since these initial conditions are approxi-
mate, the results for small time must be ignored. However, the code exhibits a fast convergence
towards periodic conditions and yields meaningful results from the second wave period onwards.

2.2.4 Verification of the conceptual model

To quantify the shape of asymmetric and skewed waves, we define the asymmetry and skewness
parameters as

As = 1− Tc/T (2.33)

and
Sk = 2 uc/Ub − 1, (2.34)

where Tc, T , uc, and Ub are defined in Figure 2-1. With this definition, a symmetric and non-
skewed wave has As = 0 and Sk = 0, while a forward-leaning and positively skewed wave has
0 < As < 1 and 0 < Sk < 1.

We compare the predictions of the bed shear stress obtained from the numerical and con-
ceptual models for 18 test cases. All test waves are periodic, with near-bed orbital velocity
height Ub = 2.5 m/s and wave period T = 8 s. Each test case is characterized by a specific
value of the asymmetry parameter (0 ≤ As ≤ 2/3), the skewness parameter (0 ≤ Sk ≤ 1/2),
and the Nikuradse sand-grain roughness of the bed (0.2 mm ≤ kn ≤ 1 mm). These ranges of As
and Sk are representative of the nearshore field data compiled by Elfrink and coauthors [15].

Figure 2-1 illustrates the near-bed velocity profile for one of the test waves (As = 1/3, Sk =
1/3). The profile of each test wave, ub(t), is described by a set of two 2nd-order polynomials
(between A and B and between D and A) and two 3rd-order polynomials (between B and C
and between C and D). These polynomials meet the following constraints: (i) zero derivative at
A and C, (ii) continuous derivative at B and D, (iii) zero average velocity over the wave period
(no mean current), and (iv) Tcp = min(Tc, Ttp). This last constraint combines two conditions.
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First, Tcp/Tc = 1 is a characteristic value for periodic waves in the nearshore region, determined
from examination of laboratory measurements of breaking periodic waves propagating over a
plane sloping beach (Case 6N in Reference [25]). The formulas by Tajima and Madsen [65]
and Elfrink et al. [15] yield Tcp/Tc ≈ 0.8 − 1 and thus support our choice. Second, to avoid
a backward-leaning velocity profile in cases with large skewness and small asymmetry, we also
require Tcp ≤ Ttp.

Predictions of bed shear stresses under sinusoidal waves (As = 0, Sk = 0) by the conceptual
model overpredict the numerical results by about 10− 15% for bed roughnesses of kn = 0.2−
1 mm. This slight disagreement in the sinusoidal case is immaterial to the analysis presented
here, whose purpose is to determine the ability of the conceptual model to capture the effects
of asymmetry and skewness on the bed shear stress. For this reason, the numerical model
is run using equivalent numerical roughnesses, k′n = 0.33 and 1.6 mm, corresponding to the
physical roughnesses used for the conceptual model, kn = 0.20 and 1.0 mm. The numerical
roughnesses were chosen so that both models yield the same maximum shear stresses in the
sinusoidal wave cases. Note that the difference of about 60% between kn and k′n is of the same
order of magnitude as the variability between different physical roughness estimates proposed
in the literature, such as kn = D65 [14], kn = 2D65 [16], and kn = 2.5D50 [51].

Figures 2-2, 2-3, and 2-4 compare the bed shear stresses predicted by the conceptual model
(thick lines) with the predictions of the numerical model (thin lines) for Sk = 0, 1/3, and 1/2,
respectively. Each figure shows six plots corresponding to three different values of As each for
two different roughnesses. The ratio between the maximum shear stress predictions is indicated
on each plot. The conceptual model captures the shape of the bed shear stresses for asymmetric
and skewed waves, yielding good estimates of the maximum shear stress (errors smaller than
15% in all cases). The minimum shear stress is accurately predicted (errors smaller than 3%) for
the non-skewed waves (Figure 2-2), while it is underpredicted by as much as 30% for the strongly
skewed waves (Figure 2-4). However, in the strongly skewed cases, the minimum shear stress
has a much smaller magnitude than the maximum and the net sediment transport is onshore
dominated. Thus, the error in the negative stresses may not have a crucial effect on the model’s
ability to predict net sediment transport. The effect of the shear stress inaccuracy on bedload
predictions will be discussed in more detail in Chapter 5. The two models’ predictions of the
lag between the maximum near-bed velocity (indicated in the figures by a tick mark on the
time axis) and the maximum bed shear stress differ by less than T/50.

Figures 2-3 and 2-4 show disagreement between the shear stress predictions of the numerical
and the conceptual model in the neighborhood of the zero down-crossing flow velocity. The
case where the disagreement is most pronounced (As = 0.25, Sk = 0.50, and kn = 1 mm
in Figure 2-4) is enlarged in Figure 2-5. This disagreement is due to the sudden increase of
flow acceleration at point P (see Figure 2-5). Physically, the dynamics of the boundary layer
before P are governed by the quasi-sinusoidal velocity profile between C and P and are not
affected by the acceleration increase at P , as the numerical model reproduces. In contrast, the
conceptual model calculates the shear stress shortly before P based on the near-bed velocity
shortly after P , due to the phase lag between shear stress and velocity. Thus, the shear stress is
underpredicted. To obtain an accurate prediction of the shear stress before P , (2.8) should not
be applied based on the real velocity between P and E, but on a fictitious velocity that extends
the quasi-sinusoidal profile between C and P , as represented by the dotted line between P and
E′. However, as noted above, the inaccuracy of the negative shear stress is of lesser importance
than that of the positive shear stress, and the simpler model is thus preferred.
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Figure 2-2: Bed shear stresses predicted by the conceptual model (thick line) and the numerical
model (thin line) for non-skewed waves (Sk = 0) of different degrees of asymmetry. The ratio
between maximum shear stresses predicted by the conceptual and the numerical models is
indicated. The tick mark on the time axis indicates the time when ub is maximum.
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Figure 2-3: Bed shear stresses predicted by the conceptual model (thick line) and the numerical
model (thin line) for moderately skewed waves (Sk = 1/3) of different degrees of asymmetry.
See also caption to Figure 2-2.
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Figure 2-4: Bed shear stresses predicted by the conceptual model (thick line) and the numerical
model (thin line) for strongly skewed waves (Sk = 1/2) of different degrees of asymmetry. See
also caption to Figure 2-2.
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Figure 2-5: Top: near-bed wave orbital velocity for the As = 0.25, Sk = 0.50, and kn = 1 mm
case in Figure 2-4. Bottom: disagreement between shear stress predictions from the conceptual
(thick line) and numerical (thin line) models.

The agreement between the numerical and conceptual models remains good when the nu-
merical model is started from rest (with small, consistent initial values of the variables) and
run for half a wave cycle. This justifies the application of the conceptual model to predict the
bed shear stresses due to a half wave in Section 2.3 [37], [26, Series Q]. Figure 2-6 shows the
comparison between shear stress predictions from the conceptual and numerical models for the
case with As = 0.33, Sk = 0.33, and kn = 1 mm, when the numerical model is started from
rest and run for only one wave period. Similar to Figure 2-3, where the numerical model was
run until convergence, the conceptual model yields a maximum shear stress slightly larger than
that predicted by the numerical model. The relevance of this discrepancy is further discussed
in Section 5.2.3.

2.3 Prediction of bedload transport under waves alone

To predict sheet flow bedload transport, we use Madsen’s formula [41], which is based on a
conceptualization of the mechanics of sediment transport and similar in form to the empirical
Meyer-Peter and Muller’s formula [50]. In a later contribution [42], Madsen generalized his
bedload formula to a sloping bed; the derivation is reproduced in Appendix A for the reader’s
convenience. According to this generalized formula, the instantaneous bedload sediment trans-

44



0 1 2 3 4 5 6 7 8

−2

0

2

4

6

8

10

12

Sk=0.33 ; As=0.33 ; T
cp

 / T
c
=1.00 ; k

N
=1.0 mm

Ratio = 1.17

τ b (
P

a)

t (s)

Figure 2-6: Bed shear stresses predicted by the conceptual model (thick line) and by the first
iteration of the numerical model started from rest (thin line).

port rate in a two-dimensional flow over a sloping bed is

qsb(t) =
8

(s− 1)ρg
max [0, |τb(t)| − τcr,β]

(√
|τb(t)|/ρ− αβ

√
τcr,β/ρ

)

cosβ (tanφm + tanβ)
τb(t)
|τb(t)| , (2.35)

where β is the bottom slope in the direction of transport, taken positive if sediment is trans-
ported upslope, s = ρs/ρ is the ratio between sediment and water densities, τcr,β and αβ are
given by (A.6) and (A.10), respectively, and φs ≈ 50◦ and φm ≈ 30◦ are the values of the
angles of static and moving friction recommended by Madsen [44]. The bed shear stress, τb(t),
is calculated using the conceptual model. The choice of bed roughness, kn, that the effective
shear stress should be based on is discussed in the following section.

2.3.1 Effective sheet flow roughness

The conceptual model presented in this chapter will next be applied to experimental cases cor-
responding to sheet flow conditions. As shown in several sheet flow studies, the total hydraulic
roughness that parameterizes the near-bed velocity is larger than the sediment diameter [e.g.,
11, 32]. For example, based on limited experimental data, Herrmann and Madsen obtained the
following empirical expression for the total sheet flow roughness [28]:

kn = [4.5 (Ψ−Ψcr) + 1.7]Dn, (2.36)

where Ψ and Ψcr are the Shields parameter and its critical value for initiation of motion,
respectively, and Dn is the nominal diameter (Dn ≈ 1.1D50). To obtain the total shear stress
according to the conceptual model based on the total, mobile-bed roughness, two different values
of the mobile-bed roughness must be used. The roughness value at the wave crest or trough
will be related to the maximum onshore or offshore wave shear stress, respectively. Since the
crest/trough shear stress and roughness are interdependent, their values must be determined
by iteration.
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Even if the hydraulic sheet flow roughness is parameterized by the total mobile-bed rough-
ness, this is not necessarily the appropriate roughness with which to compute the bed shear
stress responsible for transport. For example, accurate predictions of transport over rippled
beds have been obtained by using kn = D50, instead of the total rippled bed hydraulic rough-
ness [45]. By analogy, it is conceivable that the effective bed shear stress that is responsible
for sheet flow sediment transport is only a fraction of the total bed shear stress. Computing
this effective bed shear stress with kn = D50, analogously to the rippled bed case, would be
consistent with the roughness value used to compute the fluid drag forces in the derivation of
(2.35), presented in Appendix A. For these reasons, we will present bedload predictions both
using a shear stress based on kn = D50 and based on the total mobile-bed roughness, (2.36).
By comparing the resulting bedload predictions to experimental measurements, we will test the
predictive ability of our model and also the appropriate choice of the effective roughness. As
will be discussed below, the conceptual model presented in this chapter based on kn = D50

yields good bedload predictions for asymmetric and skewed pure waves. On the contrary, an
extension of the model to combined waves and currents, which will be introduced in Section
2.5, yields good predictions only when the shear stress is based on the mobile-bed roughness.

2.3.2 Suspension threshold

Laboratory studies of sediment transport under sheet flow conditions, the dominant bed regime
in the nearshore region, have focused on skewed, symmetric waves [e.g., 2, 10, 26, 55, 60]. While
waves in the surf zone are strongly asymmetric, only a few laboratory studies have investigated
asymmetric waves [37, 72]. In Reference [37], King measured average sediment transport rates
over half a period (from zero up-crossing to zero down-crossing near-bed velocity) of sinusoidal
and asymmetric waves, whereas all the other studies measured average sediment transport rates
over the whole wave period.

Figure 2-7 shows a comparison between predictions of average sediment transport rates
by our conceptual model and oscillating water tunnel (OWT) measurements for sinusoidal
waves by King [37]. King’s experiments were run for half a wave cycle and the measured
sediment transport rates correspond to onshore wave velocities only. The average transport
predictions are based on the bed shear stress predicted by the conceptual model using the half-
wave near-bed velocity profiles inferred from the piston motion and kn = D50. Note that, for
sinusoidal waves, the conceptual model for bed shear stress reduces to Madsen’s 1994 model
[43]. Predictions and measurements agree for the coarse and medium grain cases (D50 = 1.1 and
0.44 mm), demonstrating the predictive ability of the bedload formula, (2.35). The disagreement
between predictions and measurements for some of the fine grain cases (D50 = 0.135 mm) is
attributed to suspended transport, which is not accounted for by the bedload formula. The
importance of suspended transport is quantified by the ratio between maximum shear velocity
and settling velocity, u∗m/ws, where ws is calculated using Jiménez and Madsen’s formula [34].
The conceptual model predicts u∗m/ws ≈ 0.2− 1.2 for the coarse and medium grain cases and
u∗m/ws ≈ 1.6−4.8 for the fine grain cases. These values confirm that suspension effects are more
relevant in the latter. Within the fine grain cases, those with u∗m/ws < 2.7 are well predicted
by the bedload formula, while those with u∗m/ws > 2.7—for which the values of u∗m/ws

are indicated in Figure 2-7—are underpredicted. Thus, with the effective bed shear stress
based on kn = D50, we take u∗m/ws ≈ 2.7 as the threshold above which sediment suspension
effects become important. A similar parameter to account for the importance of suspended
sediment phase lag effects was proposed by Dohmen-Janssen et al. [12]. Dohmen-Janssen et
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al.’s phase lag parameter is proportional to the ratio between the fall time of a suspended
particle and the wave period. The threshold of this phase lag parameter, above which phase
lag effects become important according to Dohmen-Janssen et al., approximately corresponds
to our proposed threshold of u∗m/ws for the range of experimental conditions analyzed in
this paper. Note that the deviation from the 1:1 line of the data points with u∗m/ws > 2.7
systematically increases as u∗m/ws increases, suggesting that this parameter correctly quantifies
the importance of suspended transport. Since King’s measurements correspond to onshore wave
velocities only, the suspended transport is necessarily directed onshore, and the measurements
with u∗m/ws > 2.7 are underpredicted. In contrast, suspended transport under full periodic
waves is not necessarily directed onshore, as will be discussed in Section 2.4.
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Figure 2-7: Comparison between measured [37] and predicted average sediment transport rates
over half a sinusoidal wave period. Vertical bars reflect the range of reported measurements.
Predicted bedload is based on kn = D50. The values of u∗m/ws are indicated for those cases
with u∗m/ws > 2.7. The line of perfect agreement is shown.

Since in sheet flow the mobile-bed roughness is larger than the sediment diameter, the
predicted value of u∗m/ws for a given experimental condition becomes larger when the models’
predictions are based on the mobile-bed roughness. In order to yield the same classification
between cases with and without significant suspension effects for the data discussed above,
we find a threshold of u∗m/ws ≈ 4 when bedload predictions are based on the mobile-bed
roughness. The suspension threshold u∗m/ws ≈ 4 for mobile-bed roughness thus corresponds
to the suspension threshold u∗m/ws ≈ 2.7 for kn = D50.
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2.3.3 Slope effects

Figure 2-8 shows the same comparison as Figure 2-7, but including measurements with positive
and negative bottom slopes. The conceptual model is again applied with kn = D50, and only
measurements with u∗m/ws < 2.7 are plotted. The bedload formula successfully captures slope
effects, although it tends to overpredict the largest transport rates. The small negative bias for
the largest transport rates may be due to sand being transported over the trap [37].
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Figure 2-8: Comparison between measured [37] and predicted average sediment transport rates
over half a sinusoidal wave period for bedload-dominated cases (u∗m/ws < 2.7). Predicted
bedload is based on kn = D50. The bed was horizontal (β = 0), upslope in the direction of
transport (β > 0), or downslope in the direction of transport (β < 0). Vertical bars reflect the
range of reported measurements. The line of perfect agreement is shown.

2.3.4 Skewed waves

Figures 2-9 and 2-10 show comparisons between predictions of average sediment transport rates
by our conceptual model and oscillatory wave tunnel measurements (Reference [60], Series B,
Cases 7–16; Reference [2], Cases U1–U13 and U15; Reference [55], Series MA and CA; and
Reference [26], Series R and Q). The shear stresses used for the bedload predictions in Figures
2-9 and 2-10 are obtained with kn = D50 and with the mobile-bed roughness, respectively. In the
experiments, the near-bed orbital velocity is symmetric (As = 0) but skewed (0.13 < Sk < 0.31).
The bed remained flat. All studies measured average transport rates over the entire wave cycle,
with the exception of Hassan and Ribberink’s Series Q [26], in which the onshore and offshore
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transport components over half-wave cycles were measured separately. The measured average
(net) transport rates used for Series Q by Hassan and Ribberink are calculated from the onshore
and offshore transport rates reported in their Table 5, since the net transport rates in the last
column of the table are incorrect (Ribberink and Hassan, personal communication, 2007). In
addition, their measured onshore transport rates significantly differ from the transport rates
measured by King [37] under similar conditions. Our model’s predictions are based on the wave
velocities inferred from the movement of the wave piston. For Ahmed and Sato’s cases [2], we
use the near-bed velocity time-series provided by the authors (Ahmed, personal communication,
2006). For all other cases, the near-bed velocities are modeled as second-order Stokes waves.
Only those measurements for which the conceptual model predicts u∗m/ws < 2.7 or 4 (the
suspension thresholds for kn = D50 and the mobile-bed roughness, respectively) are shown in
Figures 2-9 and 2-10, respectively. As shown in Figure 2-9 the conceptual model based on
kn = D50 yields a good agreement. In contrast, Figure 2-10 shows that use of the shear stress
based on the mobile-bed roughness overpredicts the measurements by a factor of about 5.6. For
the data shown in the figure, the mobile-bed roughness is of the order of (10 to 30)D50.
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Figure 2-9: Comparison between measured and predicted average sediment transport rates
under skewed, symmetric waves (Sk > 0, As = 0, no current), for bedload-dominated cases
(u∗m/ws < 2.7). Predicted bedload is based on kn = D50. The solid line corresponds to perfect
agreement between predictions and measurements, while the dashed line is the least-square fit
to the data and corresponds to an overprediction by a factor of 1.1.
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Figure 2-10: Comparison between measured and predicted average sediment transport rates
under skewed, symmetric waves (Sk > 0, As = 0, no current), for bedload-dominated cases
(u∗m/ws < 4). Predicted bedload is based on the mobile-bed roughness. Two datapoints, for
which the transport rate is overpredicted by factors of 5.8 and 7.7 fall outside the depicted
range. The solid line corresponds to perfect agreement between predictions and measurements,
while the dashed line is the least-square fit to the data and corresponds to an overprediction
by a factor of 5.6.

50



2.3.5 Asymmetric waves

Figures 2-11 and 2-12 show comparisons between predictions of average sediment transport
rates by our conceptual model and measurements from experiments with asymmetric and non-
skewed (Sk = 0) waves conducted in OWTs (Reference [37], steep front and steep rear wave
series, As = ±0.56; and Reference [72], Cases 1–33, 0.10 < As < 0.36). In Figures 2-11 and 2-12
the model was applied using kn = D50 and the mobile-bed roughness, respectively. King’s runs
[37] are forward- and backward-leaning half waves, consisting of a forward stroke of the wave
maker. In contrast, Watanabe and Sato [72] simulated the complete oscillatory motion and
measured the average transport rate over the entire wave cycle under forward-leaning waves.
The numerical values of Watanabe and Sato’s data are reported in Appendix B of Reference [53].
Again, our model’s predictions are based on the wave velocities inferred from the movement
of the wave piston. Only bedload-dominated cases, for which the conceptual model predicts
u∗m/ws to be smaller than the corresponding threshold (2.7 or 4), are included in Figures 2-11
and 2-12. In contrast with the skewed wave cases, the conceptual model predictions based on
the mobile-bed roughness agree better with the asymmetric wave data (overprediction by a
factor of 1.5 or less, see Figure 2-11) than the predictions based on kn = D50 (underprediction
by a factor of 2.9, see Figure 2-12). In the latter case, the underprediction is not significant for
King’s half-wave transport data, which include forward- and backward-leaning half waves, but
it is significant for Watanabe and Sato’s average transport data. For King’s data the mobile-bed
roughness is only of the order of 4D50, and thus the predictions for both choices of the effective
roughness are only moderately different. However, the mobile-bed roughness for Watanabe and
Sato’s data is significantly larger than the sediment diameter (by a factor of about 17), and thus
the choice of roughness has a significant effect on the magnitude of the predictions. It is also
noted that Watanabe and Sato’s coarse grain data (Cases 16–21, numbered in the figures) show
unexpected patterns that make their reliability questionable. Specifically, although Case 19 has
a velocity amplitude 50% larger than Case 16 (all other parameters being equal), the measured
transport rate in Case 19 is 5 times smaller. Similarly, the conditions in Cases 17 and 18 differ
only in the significantly larger asymmetry of the latter (As = 0.20 and 0.36, respectively), in
spite of which the measured net transport rates are virtually identical. Most of Watanabe and
Sato’s fine grain cases are not represented in the figures, since significant suspended transport is
expected (u∗m/ws > 2.7 or 4). It is noted that the inconsistency of Watanabe and Sato’s coarse
grain data and the strong contribution of suspended transport in most of the fine grain cases
suggest that the calibration of Nielsen’s bedload transport model parameter against Watanabe
and Sato’s dataset, discussed in Reference [53], may be inappropriate.

2.4 Suspended transport effects

We investigate the qualitative effects of suspended transport under asymmetric and skewed
waves by comparing our bedload predictions with measurements of total transport in which
a strong suspended transport contribution is expected (i.e., when u∗m/ws is larger than the
suspension threshold). Figure 2-13 shows a comparison between predicted and measured average
transport rates under asymmetric waves (data of Watanabe and Sato) and skewed waves (all
other data). Predictions are based on kn = D50. The figure only includes those cases with
significant sediment suspension, for which the values of u∗m/ws > 2.7 are indicated. Again,
the deviation of the data points from the 1:1 line systematically increases with the value of
u∗m/ws. This is most clearly evidenced by Ahmed and Sato’s 0.21 mm cases (+), suggesting
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Figure 2-11: Comparison between measured and predicted average sediment transport rates
under asymmetric, non-skewed waves (As > 0, Sk = 0, no current), for bedload-dominated
cases (u∗m/ws < 2.7). Predicted bedload is based on kn = D50. The average transport rate
under King’s forward-leaning half waves (which correspond to onshore velocities) is represented
as a positive value, while the average transport rate under King’s backward-leaning half waves
(which correspond to offshore velocities) is represented as a negative value. Case numbers for
Watanabe and Sato’s coarse grain data are indicated. The solid line corresponds to perfect
agreement between predictions and measurements, while the dashed line is the least-square fit
to the data (underprediction by a factor of 2.9), and the dotted line is the least-square fit to
King’s data only (underprediction by a factor of 1.6).
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Figure 2-12: Comparison between measured and predicted average sediment transport rates
under asymmetric, non-skewed waves (As > 0, Sk = 0, no current), for bedload-dominated
cases (u∗m/ws < 4). Predicted bedload is based on the mobile-bed roughness. The solid line
corresponds to perfect agreement between predictions and measurements, while the dashed line
is the least-square fit to the data (overprediction by a factor of 1.2), and the dotted line is
the least-square fit to King’s data only (overprediction by a factor of 1.5). See also caption to
Figure 2-11
.
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that u∗m/ws correctly quantifies the importance of suspended transport. As shown in the
figure, the skewed wave data are overpredicted by the bedload model and the asymmetric wave
data are underpredicted. This suggests that suspended transport reduces the total onshore
transport under skewed waves and increases the total onshore transport under asymmetric
waves. In a skewed, symmetric wave, shortly after the large shear stress around the near-bed
velocity crest puts sediment in suspension, the near-bed velocity turns negative and transports
the sediment offshore. This effect has been discussed by Hassan and Ribberink for skewed waves
[26], and previously by Dohmen-Janssen et al. in the context of sinusoidal waves superimposed
on a current [12]. Since our sediment transport formula does not account for sediment in
suspension, it overpredicts the net transport rates for the skewed wave cases where suspended
transport is significant. In contrast, suspended sediment transport under asymmetric, non-
skewed waves appears to increase the total transport. In an asymmetric, non-skewed wave,
the near-bed velocity is directed onshore for a relatively long time after the crest. Thus, the
sediment suspended by the large shear stress near the crest stays in suspension while the velocity
is directed onshore. This phenomenon was observed experimentally by Watanabe and Sato [72,
Figure 5]. Note that, in an asymmetric, non-skewed wave, the shear stress at the trough has a
smaller magnitude than the shear stress at the crest. Consequently, the suspended transport
yields a net onshore contribution, which is not accounted for by the bedload formula, (2.35),
and leads to underprediction of Watanabe and Sato’s 0.20 mm cases in Figure 2-13.
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Figure 2-13: Comparison between measured and predicted average sediment transport rates
under skewed waves and asymmetric waves for cases where a significant contribution of sus-
pended transport is expected. Predicted bedload is based on kn = D50. Values of u∗m/ws > 2.7
are indicated. The line of perfect agreement is shown.
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2.5 Prediction of bedload transport under waves combined with
a current

Here we extend the conceptual model to waves combined with a current. We first consider the
case of sinusoidal waves plus a current, for which there are available bedload measurements.
Then, we extend the conceptual model to the most general case of asymmetric and skewed
waves plus a current. Unfortunately, to the author’s knowledge, there are no available OWT
data for asymmetric and skewed waves plus a current in which the effects of the current and of
the wave asymmetry or skewness are both significant.

2.5.1 Sinusoidal waves plus a current

To predict bed shear stress due to sinusoidal waves combined with a current, we apply Grant
and Madsen’s wave-current model, as summarized in Appendix B. The model is applied to
sheet-flow conditions, and therefore the hydraulic roughness is taken equal to the mobile-bed
roughness, (2.36). As discussed in Section 2.3.1, two possible choices of bedload roughnesses are
considered in order to obtain the bed shear stress responsible for sediment transport: kn = D50

and the mobile-bed roughness. In the former case, the wave-current model is applied as follows
(details are presented in Appendix B). First, a wave-current analysis based on mobile-bed
roughness is performed, using the reference current velocity measured at a reference level. From
this first analysis, the wave-current boundary layer thickness, δcw, and the current velocity at
z = δcw are determined. This current velocity is used as a new reference velocity for a second
wave-current analysis, now based on kn = D50. From this second analysis, the (skin friction)
bed shear stress is determined and used in Madsen’s bedload formula, (2.35), for predicting
bedload transport rates. Figures 2-14 and 2-15 show comparisons of net transport rates by
our conceptual model and OWT measurements for sinusoidal waves plus currents by Dohmen-
Janssen et al. (Reference [12], Series E, I, and J). The figures only include measurements for
which appreciable suspension effects are not expected. By analogy with the pure wave case,
the threshold of appreciable suspension is established at u∗m/ws = 2.7 or 4 when the effective
bed shear stress is based on kn = D50 or on the mobile-bed roughness, respectively. Here,
u∗m is the maximum combined wave-current shear velocity based on the effective roughness
(kn = D50 or the mobile-bed roughness). In Figure 2-14, the predicted bed shear stress used in
bedload calculations is based on kn = D50, which yields underpredictions of the measurements
by a factor of about 4.6. In Figure 2-15, the predicted bed shear stress is based on the mobile-
bed roughness, which is here of the order of 14D50. The latter choice of roughness yields an
excellent agreement between predicted and measured transport rates.

2.5.2 Asymmetric and skewed waves plus a current

To compute bedload under asymmetric and skewed waves plus a current, the total bed shear
stress is decomposed into the sum of the wave and the current shear stresses,

τb(t) = τbw(t) + τc. (2.37)

To calculate the current shear stress, τc, the waves are approximated by an equivalent sinusoidal
wave with the same period as the original wave and velocity amplitude

ubm =
uc − ut

2
, (2.38)
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Figure 2-14: Comparison between predicted and measured [12] average sediment transport
rates in current direction for co-directional sinusoidal waves plus a current. Predicted bedload
is based on kn = D50. The solid line corresponds to perfect agreement between predictions and
measurements, while the dashed line is the least-square fit to the data and corresponds to an
underprediction by a factor of 4.6.
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Figure 2-15: Comparison between predicted and measured [12] average sediment transport
rates in current direction for co-directional sinusoidal waves plus a current. Predicted bedload
is based on the mobile-bed roughness. The solid line corresponds to perfect agreement between
predictions and measurements, while the dashed line is the least-square fit to the data and
corresponds to an underprediction by a factor of 1.1.
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where uc and ut are the crest and trough velocities of the original wave, respectively. With the
equivalent periodic wave specified in this manner, the sinusoidal wave-current analysis described
in the previous section is applied to obtain τc. Using this current shear stress, the wave-current
friction factor is calculated at crest and trough accounting for wave asymmetry and skewness, as
previously outlined for pure waves, but now adding the effect of the current. Analogous to the
pure wave case, a time-varying wave-current friction factor is obtained by linear interpolation
between the crest and trough values, from which the wave shear stress, τbw(t), is determined.
The relevant expressions involved in these calculations are summarized in Appendix B. Due to
the lack of bedload laboratory data with significant contributions to the transport from both
the current and the wave asymmetry and/or skewness, comparison of this proposed general
methodology with measurements is not presented.

2.6 Summary

In this chapter we developed a simple conceptual model for the bed shear stress that extends
the classic sinusoidal wave theory to asymmetric and skewed waves. This conceptual model uses
a time-variable friction factor that accounts for the variability in wave shape. The near-bed
velocity profile between the zero up-crossing and the crest is approximated by a quarter of a
sinusoid, which provides an estimation of the friction factor at the crest. The friction factor
at the trough is estimated analogously. Then, a linear friction factor variation between the
crest and trough values is assumed. The computations of bed shear stress by the conceptual
model are in reasonable agreement with the results of a numerical boundary layer model with
a k-ε turbulence closure. The bed shear stress model is used to predict bedload, and these
predictions are compared to experimental OWT data. Finally, an extension of the model to
waves combined with a current is presented.

The conceptual bed shear stress model is readily applicable to predict bedload sediment
transport. In contrast with the approaches of Hoefel and Elgar [29] and of Nielsen [53] to
compute sediment transport, we do not parameterize the effect of fluid acceleration or the
horizontal pressure gradients acting on the sediment particles. Rather, we calculate sediment
transport from the bed shear stress, obtained as a function of the near-bed wave velocity, as
was previously done by Henderson et al. to predict nearshore sandbar migration [27]. Unlike
Hoefel and Elgar’s and Nielsen’s formulations, our methodology for computing bedload under
asymmetric and skewed waves relies on physically based mechanistic arguments, and it is free of
adjustable parameters, although the choice of bed roughness to parameterize the bed shear stress
responsible for bedload sediment transport is unclear. Indeed, as we consider the extension of
our bedload model to the case of waves combined with a current, the choice of bed roughness
becomes problematic. For purely skewed waves, good agreement with experimental data is
obtained when using a roughness equal to the sediment diameter, while the use of the total
mobile-bed roughness yields overpredictions by a factor of about 5.6. In contrast, for sinusoidal
waves plus a current, good agreement with the available data is obtained by using the total
mobile-bed roughness, while the use of the sediment diameter yields underpredictions by a factor
of about 4.6. Similarly, the use of the mobile-bed roughness yields a dramatically improved
agreement with some of the purely asymmetric wave data. For the remaining asymmetric wave
data, for which the mobile-bed roughness is of the same order as the sediment diameter, the
agreement between predictions and measurements is good for either choice of the roughness.

The inconsistent choice of roughness needed to predict bedload in cases with and without
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currents may be avoided by modifying the model used to predict the bed shear stress. In fact,
while the comparisons between bed shear stresses predicted by the simple conceptual model and
by the numerical k-ε model appeared reasonable, some disagreement was noted. Specifically,
the predictions of both models show good agreement for purely asymmetric waves, while the
conceptual model slightly overpredicts the onshore bed shear stresses for skewed waves. This
overprediction may be responsible for the overprediction of bedload due to skewed waves when
the mobile-bed roughness is used. This suggest the necessity of a more rigorous model for the
prediction of the bed shear stress under skewed and asymmetric waves, which is derived in the
following chapter.
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Chapter 3

Analytical boundary layer model for
an oscillating water tunnel

Oscillating water tunnels (OWTs) are commonly used experimental facilities in coastal engi-
neering research. They intend to reproduce near-bed hydrodynamic and sediment transport
phenomena at a realistic scale. In an OWT, a piston produces an oscillatory motion that prop-
agates almost instantaneously to the whole tunnel. Consequently, unlike the wave motion in
the sea or in a wave flume, flow in an OWT is uniform along the tunnel. In this chapter we
present an analytical model of the boundary layer hydrodynamics in an OWT, based on an
assumption on the spatial structure and the temporal dependence of the eddy viscosity. The
model provides analytical expressions for the velocities and stresses. In the next chapter this
solutions of the boundary layer will be used together with geometrical considerations of the
cross-sectional flow to completely characterize the OWT hydrodynamics.

3.1 OWT boundary layer equations

We consider a two-dimensional, rough turbulent wave boundary layer. The ensemble-averaged
boundary layer velocities are denoted by (u,w), and the horizontal free-stream velocity is de-
noted by ub. The vertical scale of the boundary layer is denoted by δw. The horizontal scale
of the boundary layer due to a propagating wave is given by the inverse of the wave number,
1/k. In the case of an OWT, waves propagate almost instantaneously, and the longitudinal
dimension is determined by that of the experimental facility, L. The time scale is the wave
period, T = 2π/ω. In the general case of a propagating wave, flow inside the wave boundary
layer is described by the continuity equation,

∂u

∂x
+

∂w

∂z
= 0, (3.1)

and the boundary layer momentum equation,

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂

∂x

p

ρ
+

∂

∂z

τzx

ρ
+ O((kδ)|U∞|ω) . (3.2)

Here, p denotes the free-stream pressure, ρ is the fluid density, and τzx is a component of the
Reynolds shear stress tensor, given by

τzx = ρνt
∂u

∂z
, (3.3)
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where νt(z, t) is the eddy viscosity, which is assumed isotropic but time-dependent.

In deriving (3.2), several assumptions have been made. First, the boundary layer assumption
requires that kδw ¿ 1, where, for an OWT, k should be replaced by the inverse of the tunnel
length. Second, the boundary layer thickness must be large compared to the roughness elements,
so that the details of flow around individual elements can be neglected. Thus, δw/Dn À 1 is
assumed, where Dn is the nominal sediment grain diameter or, more generally, the scale of the
roughness protrusions. Third, flow is assumed rough turbulent, so that the Reynolds stresses are
much larger than the viscous stresses. Fourth, based on observations of steady turbulent flows,
all components of the Reynolds stress tensor are assumed to be of the same order of magnitude.
The derivation of (3.2) under these assumptions is discussed in detail by Trowbridge [67].

In this chapter, we study flow in OWTs, where ∂u/∂x ≈ 0. By continuity, w ≈ 0, and the
boundary layer momentum equation simplifies to

∂u

∂t
= −1

ρ

∂

∂x

p

ρ
+

∂

∂z

τzx

ρ
+ O ((kδ)|U∞|ω) . (3.4)

The case of a propagating wave is discussed in Chapter 6.

The free-stream wave velocity will be represented by its two first Fourier harmonics,

ub = ub1 + ub2 = Re

{
U

(1)
∞
2

eiωt +
U

(2)
∞
2

ei2ωt + cc

}
, (3.5)

where cc (or the superscript ∗) denotes the complex conjugate. The second harmonic is assumed
small compared to the first, so that

λ ≡ |U (2)
∞ |

|U (1)
∞ |

¿ 1 (3.6)

In general, we account for a weak current compared to the wave, so that

µ ≡
(

u∗c
u∗w

)2

¿ 1, (3.7)

where u∗w and u∗c are the wave and current shear velocities, respectively, which are related to
the wave and current shear stresses by

u∗w =
|τbw|1/2

√
ρ

(3.8)

u∗c =
|τbc|1/2

√
ρ

, (3.9)

where hereafter the overline denotes a time average. We also define a combined wave-current
shear velocity as

u∗wc =
|τb|1/2

√
ρ

=
|τbw + τbc|1/2

√
ρ

. (3.10)

In order to keep both the second-harmonic and current effects in the analysis, they are assumed
to be of the same order of magnitude, that is,

λ ∼ µ. (3.11)
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The variables are decomposed into a mean, even harmonics, and odd harmonics:

u = u + ũo + ũe (3.12)
p = p + p̃o + p̃e (3.13)
νt = ν + ν̃o + ν̃e. (3.14)

Then, (3.4) can be written as

∂ (ũo + ũe)
∂t

= −1
ρ

∂

∂x
(p + p̃o + p̃e) +

∂

∂z

[
(ν + ν̃o + ν̃e)

∂

∂z
(u + ũo + ũe)

]
. (3.15)

As will be shown in Chapter 4, while the horizontal mean pressure gradient is small, it must be
kept in (3.15), even in the absence of a current, in order to satisfy the total flow rate constraint
imposed in the tunnel (the flow rate must be zero if no current is imposed). To indicate that
this pressure gradient is a constant, we denote it by

G ≡ ∂p

∂x
. (3.16)

Time averaging (3.15) yields

0 = −G

ρ
+

∂

∂z

[
ν

∂u

∂z
+ ν̃o

∂ũo

∂z
+ ν̃e

∂ũe

∂z

]
. (3.17)

Subtracting (3.17) from (3.15) and separating odd and even harmonics yield, to second order,

∂ũo

∂t
= −1

ρ

∂p̃o

∂x
+

∂

∂z

[
(ν + ν̃e)

∂ũo

∂z

]
(3.18)

and

∂ũe

∂t
= −1

ρ

∂p̃e

∂x
+

∂

∂z

[
ν̃o

∂ũo

∂z
− ν̃o

∂ũo

∂z

]
+

∂

∂z

[
ν̃e

∂ũe

∂z
− ν̃e

∂ũe

∂z

]

+
∂

∂z

[
ν

∂ũe

∂z

]
+

∂

∂z

[
ν̃e

∂u

∂z

]
. (3.19)

Note that in (3.18) we have neglected the third-order term

∂

∂z

[
ν̃o

∂ (u + ũe)
∂z

]
, (3.20)

of order λµ + λ2.

3.2 The eddy viscosity structure

The eddy viscosity is assumed to depend both on the distance from the boundary (z) and on
time, according to

νt(z, t) = ν(z)

(
1
2

+
a(1)

2
eiωt +

a(2)

2
ei2ωt + cc + O

(
ε2

)
)

. (3.21)
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where ε ∼ |u(3)/u(1)| ¿ 1. Based on law-of-the-wall arguments in the wave boundary layer (of
thickness δw) and in the current boundary layer (of thickness δc), the vertical structure of the
eddy viscosity, ν(z), is assumed to be

ν(z) =





κu∗wcz 0 ≤ z ≤ δI

κu∗wcδI δI < z ≤ δJ

κu∗cz δJ < z ≤ δK

κu∗cδL δK < z,

(3.22)

where δI ≡ δw/6, δL ≡ δc/6, δwc ≡ u∗wcδI/u∗c,

δJ ≡
{

min (δw, δwc) if u∗wcδI < u∗cδL

δw if u∗wcδI ≥ u∗cδL
, (3.23)

and δK ≡ max(δJ , δL). The wave boundary layer thickness is given by δw ≡ Al, where l, the
boundary layer length scale, is defined by

l ≡ κu∗wc

ω
. (3.24)

The computation of A, a function of the relative roughness, is discussed in Section 3.6. The
assumption given by (3.22) is based on a conceptualization of the wave and current boundary
layers as divided in two regions. In the lower region, which corresponds to the bottom 1/6
of the layer, the size of the turbulent eddies increases with the distance from the wall. In the
upper region, the size of the turbulent eddies becomes constant. Such an assumption accurately
reproduces velocity measurements in steady turbulent flows [6].

The vertical structure defined by (3.22) is illustrated in Figure 3-1.
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Figure 3-1: Illustration of different possible cases of the eddy viscosity vertical structure, as
defined by (3.22).

3.3 The generic ODE

To solve the boundary layer equations, (3.17) to (3.19), we will decompose the even and odd
parts of the velocity into a series of even and odd Fourier harmonics, respectively, and solve
harmonic by harmonic (up to the third harmonic). This will be discussed in detail below. For
each harmonic (n = 1, 2, 3) we will obtain an ODE that we need to solve. These ODEs are all
similar and can be written in a generic form. In this section we present the solution of this
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generic ODE, which will later be repeatedly used to describe the boundary layer hydrodynamics.
Given the assumed vertical structure of the eddy viscosity, the ODE that arises when studying
the n-th harmonic is of the form:





d

dζ

(
ζ
dF (n)

dζ

)
− inF (n) = 0 0 ≤ ζ ≤ δI

l

δI

l

d2F (n)

dζ2
− inF (n) = 0

δI

l
< ζ ≤ δJ

l

u∗c
u∗cw

d

dζ

(
ζ
dF (n)

dζ

)
− inF (n) = 0

δJ

l
< ζ ≤ δK

l

u∗c
u∗wc

δL

l

d2F (n)

dζ2
− inF (n) = 0

δK

l
< ζ,

(3.25)

where ζ ≡ z/l is the nondimensional vertical coordinate and n ∈ N. F (n)(ζ) is the complex
solution of (3.25) for a given value of n. At the outer edge of the boundary layer, the velocity
must converge to the prescribed potential flow velocity, which, as shown below, requires that
F (n) → 0 as ζ →∞. The solution is

F (n) =





[
ker

(
2
√

nζ
)

+ i kei
(
2
√

nζ
)]

+A(n)
[
ber

(
2
√

nζ
)

+ i bei
(
2
√

nζ
)]

0 ≤ ζ ≤ δI
l

B(n) exp
{
−eiπ/4

√
nl
δI

(
ζ − δI

l

)}

+C(n) exp
{

eiπ/4
√

nl
δI

(
ζ − δI

l

)}
δI
l < ζ ≤ δJ

l

D(n)
[
ker

(
2
√

ñζ
)

+ i kei
(
2
√

ñζ
)]

+E(n)
[
ber

(
2
√

ñζ
)

+ ibei
(
2
√

ñζ
)]

δJ
l < ζ ≤ δK

l

H(n) exp
{
−eiπ/4

√
ñl
δL

(
ζ − δK

l

)}
δK
l < ζ,

(3.26)

where ñ ≡ nu∗wc/u∗c. ker, kei, ber, and bei are the Kelvin functions of order zero [1]. In
order to guarantee the continuity of velocities and shear stresses, we must impose that F and
νdF/dζ are continuous. This yields six conditions, from which the six unknown constants, A(n),
B(n), C(n), D(n), E(n), and H(n), are determined. Computation of the shear stresses requires
computing the derivatives of Kelvin functions of order zero, for which the following relationships
are used [1]:

d ker
(
2
√

nζ
)

dz
=

√
n

2ζ

(
ker1

(
2
√

nζ
)

+ kei1
(
2
√

nζ
))

(3.27)

d kei
(
2
√

nζ
)

dz
=

√
n

2ζ

(
− ker1

(
2
√

nζ
)

+ kei1
(
2
√

nζ
))

(3.28)

d ber
(
2
√

nζ
)

dz
=

√
n

2ζ

(
ber1

(
2
√

nζ
)

+ bei1
(
2
√

nζ
))

(3.29)

d bei
(
2
√

nζ
)

dz
=

√
n

2ζ

(
−ber1

(
2
√

nζ
)

+ bei1
(
2
√

nζ
))

, (3.30)
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where ker1, kei1, ber1, and bei1 are the Kelvin functions of order one. Matching velocities and
shear stresses at ζ = δK/l yields

D(n)
[
ker C̃K + i kei C̃K

]
+ E(n)[ber C̃K + ibei C̃K ] = H(n) (3.31)

D(n)
[
−i ker1 C̃K + kei1C̃K

]
+ E(n)[−i ber1C̃K + bei1C̃K ] = −

√
δK

δL
H(n), (3.32)

where C̃K is defined in (3.50) below. Matching velocities and shear stresses at ζ = δJ/l yields

B(n) exp
{
−KI

δJ − δI

l

}
+ C(n) exp

{
KI

δJ − δI

l

}

=
{

αDH

[
ker C̃J + i kei C̃J

]
+ αEH

[
ber C̃J + ibei C̃J

]}
H(n) (3.33)

−B(n) exp
{
−KI

δJ − δI

l

}
+ C(n) exp

{
KI

δJ − δI

l

}

=
√

u∗cδJ

u∗wcδI

{
αDH

[
−i ker1 C̃J + kei1C̃J

]
+ αEH

[
−i ber1C̃J + bei1C̃J

]}
H(n), (3.34)

where αDH , αEH , C̃J , and KI are defined in (3.46), (3.47), (3.49), and (3.51) below. Matching
velocities and shear stresses at ζ = δI/l yields

[kerCI + i keiCI ] + A(n) [berCI + ibeiCI ] = (αBH + αCH) H(n) (3.35)
[−i ker1 CI + kei1CI ] + A(n) [−iber1CI + bei1CI ] = (−αBH + αCH) H(n), (3.36)

where αBH , αCH , and CI are defined in (3.44), (3.45), and (3.48) below. Solving these three
systems of two linear equations, solutions for the six unknown constants are obtained:

A(n) = αAHH(n) (3.37)
B(n) = αBHH(n) (3.38)
C(n) = αCHH(n) (3.39)
D(n) = αDHH(n) (3.40)
E(n) = αEHH(n) (3.41)

H(n) =
kerCI + i keiCI

αBH + αCH − αAH [berCI + ibeiCI ]
, (3.42)
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where

αAH = {(αBH + αCH) [−i ker1 CI + kei1CI ]− (−αBH + αCH) [kerCI + i keiCI ]}
{[berCI + ibeiCI ] [−i ker1 CI + kei1CI ]
− [−i ber1CI + bei1CI ] [kerCI + i keiCI ]}−1 (3.43)

αBH =
1

2 exp {−KI (δJ − δI) /l}{
αDH

[(
ker C̃J + i kei C̃J

)
−

√
u∗cδJ

u∗wcδI

(
−i ker1 C̃J + kei1C̃J

)]

+αEH

[(
ber C̃J + i bei C̃J

)
−

√
u∗cδJ

u∗wcδI

(
−iber1C̃J + bei1C̃J

)]}
(3.44)

αCH =
1

2 exp {KI (δJ − δI) /l}{
αDH

[(
ker C̃J + i kei C̃J

)
+

√
u∗cδJ

u∗wcδI

(
−i ker1 C̃J + kei1C̃J

)]

+αEH

[(
ber C̃J + i bei C̃J

)
+

√
u∗cδJ

u∗wcδI

(
−iber1C̃J + bei1C̃J

)]}
(3.45)

αDH =
{[
−iber1C̃k + bei1C̃k

]
+

√
δK/δL

[
berC̃k + ibei C̃k

]}

{[
−iber1C̃k + bei1C̃k

] [
ker C̃k + i kei C̃k

]

+
[
berC̃k + ibeiC̃k

] [
i ker1 C̃k − kei1C̃k

]}−1
(3.46)

αEH =
{[
−i ker1 C̃k + kei1C̃k

]
+

√
δK/δL

[
ker C̃k + i kei C̃k

]}

{[
i ber1C̃k − bei1C̃k

] [
ker C̃k + i kei C̃k

]

+
[
ber C̃k + ibei C̃k

] [
−i ker1 C̃k + kei1C̃k

]}−1
(3.47)

and

CI ≡ 2

√
nδI

l
(3.48)

C̃J ≡ 2

√
ñδJ

l
(3.49)

C̃K ≡ 2

√
ñδK

l
(3.50)

KI ≡ eiπ/4

√
nl

δI
. (3.51)
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3.4 First-order analysis

We consider first the leading-order terms, O(λ0) ∼ O(µ0) ∼ O(1). Only the odd equation,
(3.18), includes terms to the leading order. Therefore, the governing leading-order equation is

∂ũo

∂t
=

∂ub1

∂t
+

∂

∂z

[
(ν + ν̃e)

∂ũo

∂z

]
. (3.52)

The ratio between the third and first harmonics of the velocity is anticipated to be
∣∣∣∣∣
u(3)

u(1)

∣∣∣∣∣ ∼
ν(2)

ν
∼ a(2) ∼ ε ∼ 0.4 À λ ∼ µ. (3.53)

This scaling will be confirmed once we obtain an expression for a(2), (3.94). We neglect terms
of O(ε2). The first-order variables read

ν = ν(z) (3.54)

ν̃e = ν(z)

(
a(2)

2
ei2ωt + cc + O(ε2)

)
(3.55)

ũo =

(
u(1)

2
eiωt +

u(3)

2
ei3ωt + cc

)
+ O(ε2u(1)). (3.56)

3.4.1 First-order, first-harmonic solution

The governing equation for the first harmonic is

iωu(1) = iωU (1)
∞ +

d
dz

(
ν

(
du(1)

dz
+

a(2)

2
du(1)∗

dz

))
, (3.57)

or
d
dz

(
ν

du(1)

dz

)
− iωu(1) = −iωU (1)

∞ − a(2)

2
d
dz

(
ν

du(1)∗

dz

)
, (3.58)

where, for brevity, the complex conjugate terms (cc) have been omitted on both sides. We write

u(1) = y1 + y2 + O(ε2), (3.59)

where y2/y1 ∼ ε, and solve (3.58) by perturbation analysis. To O(y1) we obtain

d
dz

(
ν

dy1

dz

)
− iωy1 = −iωU (1)

∞ . (3.60)

The homogeneous equation corresponding to (3.60) is of the type discussed in Section 3.3, while
a particular solution is the constant U

(1)
∞ . By using the bottom boundary condition, y1(ζ0) = 0,

we obtain

y1 = U (1)
∞

(
1− F (1)(ζ)

F (1)(ζ0)

)
. (3.61)
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To O(ε y1) we obtain

d
dz

(
ν

dy2

dz

)
− iωy2 = −a(2)

2
iωU (1)∗

∞
F (1)∗(ζ)
F (1)∗(ζ0)

. (3.62)

The homogeneous equation corresponding to (3.62) is of the type discussed in Section 3.3, while
a particular solution is

a(2)

4
U (1)∗
∞

F (1)∗(ζ)
F (1)∗(ζ0)

. (3.63)

This is a particular solution of (3.62) because F (1)∗ is a solution of the complex conjugate of
the homogeneous equation, i.e.,

d
dz

(
ν

dF (1)∗

dz

)
= −iωF (1)∗. (3.64)

By using the bottom boundary condition, y2(ζ0) = 0, we obtain

y2 =
a(2)

4
U (1)∗
∞

(
F (1)∗(ζ)
F (1)∗(ζ0)

− F (1)(ζ)
F (1)(ζ0)

)
. (3.65)

Therefore, the first-order velocity is

u(1) = y1 + y2 = U (1)
∞

(
1− F (1)(ζ)

F (1)(ζ0)

)
+

a(2)

4
U (1)∗
∞

(
F (1)∗(ζ)
F (1)∗(ζ0)

− F (1)(ζ)
F (1)(ζ0)

)
, (3.66)

where the second term is of order ε with respect to the first, and terms of order ε2 are neglected.

The first-harmonic shear stress is given by

τ (1)

ρ
= ν

(
du(1)

dz
+

a(2)

2
du(1)∗

dz

)
. (3.67)

To compute the first-harmonic bed shear stress, we use the approximation

lim
ζ→ζ0

ζ
dF (n)

dζ
≈ lim

ζ→0
ζ
dF (n)

dζ
= −1

2
(3.68)

to obtain
τ

(1)
b

ρ
=

κ

2
u∗wcU

(1)
∞

F (1)(ζ0)
+

κu∗wc

8
a(2)U (1)∗

∞
F (1)(ζ0) + F (1)∗(ζ0)∣∣F (1)(ζ0)

∣∣2 , (3.69)

where the second term is of order ε with respect to the first. The error introduced by (3.68)
depends on the relative roughness. For a small roughness of ζ0 = 0.001 (a typical value for a fine
grain, fixed bed case), the error introduced by (3.68) is less than 0.5% in magnitude and 1◦ in
phase. For a large roughness of ζ0 = 0.05 (a typical value for a coarse grain, mobile-bed case),
the error introduced by (3.68) is 9% in magnitude and 9◦ in phase for the first harmonic (n = 1)
and 17% and 18◦ for the third harmonic (n = 3). Therefore, (3.69) is a good approximation
to the bed shear stress when the roughness is not too large. For a more accurate computation
when large roughnesses are involved, dF (n)/dζ must be evaluated at ζ0, which is easily done
numerically.
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3.4.2 First-order, third-harmonic solution

The governing equation for the third harmonic is

3iωu(3) =
d
dz

[
ν

(
du(3)

dz
+

a(2)

2
du(1)

dz

)]
, (3.70)

or
d
dz

(
ν

du(3)

dz

)
− 3iωu(3) = −a(2)

2
d
dz

(
ν

du(1)

dz

)
, (3.71)

where, for brevity, the complex conjugate terms (cc) have been omitted on both sides. Next, we
introduce the first-order solution, (3.66), into (3.71). Since the leading third-harmonic term is
already of order ε compared to the leading first-harmonic term, only the leading third-harmonic
terms are retained, so that both harmonics are solved to O(ε). This results in

d
dz

(
ν

du(3)

dz

)
− 3iωu(3) = iω

a(2)

2
F (1)(ζ)
F (1)(ζ0)

U (1)
∞ . (3.72)

The homogeneous equation corresponding to (3.72) is of the type discussed in Section 3.3, while
a particular solution is

−a(2)

4
F (1)(ζ)
F (1)(ζ0)

U (1)
∞ . (3.73)

This particular solution is shown to work by recalling that F (1) is a solution of the first-harmonic
homogeneous equation, i.e.,

d
dz

(
ν

dF (1)

dz

)
= iωF (1). (3.74)

By using the bottom boundary condition, u(3)(ζ0) = 0, we obtain

u(3) =
a(2)

4
U (1)
∞

(
− F (1)(ζ)

F (1)(ζ0)
+

F (3)(ζ)
F (3)(ζ0)

)
. (3.75)

The leading-order, third-harmonic shear stress is given by

τ (3)

ρ
= ν

(
du(3)

dz
+

a(2)

2
du(1)

dz

)
. (3.76)

By using the approximation given by (3.68), we obtain

τ
(3)
b

ρ
=

κu∗wca
(2)U

(1)
∞

8

[
3F (3)(ζ0)− F (1)(ζ0)

]

F (1)(ζ0)F (3)(ζ0)
. (3.77)

As discussed above, (3.77) should not be used for large roughnesses.
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3.4.3 Determination of u∗wc and a(2)

To close the first-order solution to O(ε), we need to determine u∗wc to second order (ε1) and
a(2) to leading order (ε0). For this, we follow Trowbridge and Madsen [68] and impose

u∗wc =
∣∣∣∣
τb

ρ

∣∣∣∣
1/2

(3.78)

u∗wca
(2) = 2e−i2ωt

∣∣∣∣
τb

ρ

∣∣∣∣
1/2

. (3.79)

For the reader’s convenience, the details of the derivation to obtain expressions for u∗wc and
a(2), carried out by Trowbridge and Madsen [68], are reproduced here. Consider the ratio

τb∣∣∣τ (1)
b

∣∣∣
= cos

(
ωt + arg τ

(1)
b

)
+ ε cos

(
3ωt + arg τ

(3)
b

)
+ O(ε2). (3.80)

Recall that ε ∼ |τ (3)
b /τ

(1)
b |. Define

ξ ≡ ωt + arg τ
(1)
b − α (3.81)

β ≡ 3 arg τ
(1)
b − arg τ

(3)
b , (3.82)

where α is the first positive zero of

sinα = ε sin(3α− β). (3.83)

Using these definitions and neglecting terms of O(ε2), (3.80) can be rewritten as

τb∣∣∣τ (1)
b

∣∣∣
= cos ξ

[
cosα− ε cos(3α− β) + 2ε cos(2ξ + 3α− β) + O(ε2)

]
. (3.84)

Noting that cosα =
(
1− ε2 sin2(3α− β)

)1/2 = 1 + O(ε2), (3.84) can be further simplified to

τb∣∣∣τ (1)
b

∣∣∣
= cos ξ

[
1 + ε (− cosβ + 2 cos(2ξ − β)) + O(ε2)

]
. (3.85)

Using the Taylor series of the square root, (3.85) implies that

|τb|1/2

∣∣∣τ (1)
b

∣∣∣
1/2

= |cos ξ|1/2

[
1 + ε

(
cos(2ξ − β)− 1

2
cosβ

)
+ O(ε2)

]
. (3.86)

Therefore,

u∗wc =
∣∣∣∣
τb

ρ

∣∣∣∣
1/2

=

∣∣∣∣∣
τ

(1)
b

ρ

∣∣∣∣∣

1/2

|cos ξ|1/2

[
1 + ε

(
cos(2ξ − β)− 1

2
cosβ

)
+ O(ε2)

]
. (3.87)

Using the following cosine Fourier series,

|cos ξ|1/2 =
1√
π

Γ(3/4)
Γ(5/4)

[
1 +

2
5

cos(2ξ)− 2
15

cos(4ξ) + . . .

]
, (3.88)
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where Γ is the gamma function, we obtain

u∗wc =

∣∣∣∣∣
τ

(1)
b

ρ

∣∣∣∣∣

1/2
1√
π

Γ(3/4)
Γ(5/4)

(
1− 3

10
Re

{
τ

(3)
b τ

(1)∗
b

τ
(1)
b τ

(1)
b

}
+ O(ε2)

)
. (3.89)

The coefficient in front of the parentheses is approximately equal to 0.76. A leading-order
approximation to the average wave-current shear stress is therefore

u∗wc ≈ 0.76

∣∣∣∣∣
τ

(1)
b

ρ

∣∣∣∣∣

1/2

. (3.90)

Introducing the solutions for τ
(1)
b and τ

(3)
b , (3.69) and (3.77), the final result is

u∗wc =
κ

2π

Γ2(3/4)
Γ2(5/4)

∣∣∣U (1)
∞

∣∣∣
∣∣F (1)(ζ0)

∣∣

Re

{
1 +

a(2)U
(1)∗
∞

U
(1)
∞

[
1
4
− 1

5
F (1)(ζ0)
F (1)∗(ζ0)

+
3
20

F (1)(ζ0)F (1)(ζ0)
F (1)∗(ζ0)F (3)(ζ0)

]
+ O(ε2)

}
. (3.91)

To evaluate a(2), we use (3.86) and write

u∗wca
(2) = 2e−i2ωt

∣∣∣∣
τb

ρ

∣∣∣∣
1/2

= 2

∣∣∣∣∣
τ

(1)
b

ρ

∣∣∣∣∣

1/2

|cos ξ|1/2 (cos(2ωt)− i sin(2ωt)) [1 + O(ε)] . (3.92)

Using (3.88) and time averaging yield

u∗wca
(2) =

2
5

∣∣∣∣∣
τ

(1)
b

ρ

∣∣∣∣∣

1/2
1√
π

Γ(3/4)
Γ(5/4)

τ
(1)
b

τ
(1)∗
b

[1 + O(ε)] . (3.93)

By comparing (3.93) with (3.89), we conclude that

a(2) =
2
5

U
(1)
∞

U
(1)∗
∞

F (1)∗(ζ0)
F (1)(ζ0)

[1 + O(ε)] , (3.94)

which confirms that ε ∼ a(2) ∼ 2/5.

3.4.4 Determination of ζ0

The value of ζ0 ≡ z0/l, the nondimensional vertical location of the zero velocity, depends
through l on the wave-current shear velocity, u∗wc, which in turn depends on ζ0. For a rough
turbulent flow, ζ0 is defined by

z0 =
kn

30
(3.95)

ζ0 =
z0

l
=

knω

30κu∗wc
. (3.96)
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By using the solution for u∗wc given by (3.91), we obtain the following implicit equation for ζ0,
which can be solved by iteration:

∣∣∣F (1)(ζ0)
∣∣∣− ζ0

15κ2

πωkn

(
Γ

(
3
4

)

Γ
(

5
4

)
)2 ∣∣∣U (1)

∞
∣∣∣Re

{
1

+
2
5

F (1)(ζ0)
F (1)∗(ζ0)

[
1
4
− 1

5
F (1)(ζ0)
F (1)∗(ζ0)

+
3
20

F (1)(ζ0)F (1)(ζ0)
F (1)∗(ζ0)F (3)(ζ0)

]}
= 0. (3.97)

Once ζ0 is known, (3.96) is used to compute u∗wc.

For a smooth turbulent flow, ζ0 is defined by

z0 =
νmolec

9u∗wc
(3.98)

ζ0 =
z0

l
=

νmolecω

9κu∗wc
, (3.99)

where νmolec is the molecular kinematic eddy viscosity. The implicit equation for ζ0 becomes

∣∣∣F (1)(ζ0)
∣∣∣
2
− ζ0

9κ3

4π2ωνmolec

(
Γ

(
3
4

)

Γ
(

5
4

)
)4 ∣∣∣U (1)

∞
∣∣∣
2
Re

{
1

+
2
5

F (1)(ζ0)
F (1)∗(ζ0)

[
1
4
− 1

5
F (1)(ζ0)
F (1)∗ +

3
20

F (1)(ζ0)F (1)(ζ0)
F (1)∗(ζ0)F (3)(ζ0)

]}
= 0. (3.100)

We note that viscous stresses were neglected at every depth in the governing equations, thus
assuming a rough turbulent flow. In the case of a smooth turbulent flow, the effect of the thin
viscous sublayer is thus neglected.

3.5 Second-order analysis

Next, we consider second-order terms, O(λ) ∼ O(µ). We neglect all terms of higher order,
such as terms of order λε or µε. These higher-order terms are of the same order as the fourth
harmonic of the velocity and the third harmonic of the eddy viscosity, which have also been
neglected. The odd-harmonic equation, (3.18), has no term of O(λ) ∼ O(µ), while the time-
average and the even-harmonic equations, (3.17) and (3.19), do. These two latter equations
yield the zeroth- and second-harmonic solutions, respectively.

3.5.1 Second-order, zeroth-harmonic solution

The governing equation is

0 = −1
ρ

∂p

∂x
+

∂

∂z

[
ν

∂u

∂z
+ ν̃o

∂ũo

∂z

]
. (3.101)

The longitudinal pressure gradient due to the imposed or wave-induced current varies over the
length scale of the OWT, and it can therefore be treated as a constant, G ≡ ∂p/∂x. Thus,

d
dz

[
τ

ρ

]
=

d
dz

[
ν

(
du

dz
+

a(1)

4
du(1)∗

dz
+

a(1)∗

4
du(1)

dz

)]
=

G

ρ
. (3.102)
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Therefore, the mean shear stress is

τ = G(z − z0) + τ b, (3.103)

where τ b is the unknown mean bed shear stress. (3.102) then yields a trivial differential equation
for the unknown mean velocity,

du

dz
= −a(1)

4
du(1)∗

dz
− a(1)∗

4
du(1)

dz
+

1
ρν

[
G(z − z0) + τ b

]
. (3.104)

Using the first-harmonic result, (3.66), and the boundary condition, u(z0) = 0, integration of
(3.104) yields

u = −Re

{
a(1)∗

2
U (1)
∞

(
1− F (1)(ζ)

F (1)(ζ0)

)}
+ I(z), (3.105)

where I(z) is defined by

I(z) ≡ 1
ρ

∫ z

z0

1
ν(z′)

[
G(z′ − z0) + τ b

]
dz′. (3.106)

With the mean eddy viscosity given by (3.22), evaluation of the integral (3.106) results in

I(z) =





1
ρκu∗wc

[
G (z − z0) + (τ b − z0G) ln

z

z0

]
z ≤ δI

IδI
+

1
ρκu∗wcδI

[
G

z2 − δ2
I

2
+

(
τ b − z0G

)
(z − δI)

]
δI < z ≤ δJ

IδJ
+

1
ρκu∗c

[
G (z − δJ) + (τ b − z0G) ln

z

δJ

]
δJ < z ≤ δK

IδK
+

1
ρκu∗cδL

[
G

z2 − δ2
K

2
+

(
τ b − z0G

)
(z − δK)

]
δK < z,

(3.107)

where

IδI
≡ 1

ρκu∗wc

[
G (δI − z0) + (τ b − z0G) ln

δI

z0

]
(3.108)

IδJ
≡ IδI

+
1

ρκu∗wcδI

[
G

δ2
J − δ2

I

2
+

(
τ b − z0G

)
(δJ − δI)

]
(3.109)

IδK
≡ IδJ

+
1

ρκu∗c

[
G(δK − δJ) + (τ b − z0G) ln

δK

δJ

]
. (3.110)

3.5.2 Second-order, second-harmonic solution

The governing equation for the second harmonic reads

∂ũe

∂t
=

∂ub2

∂t
+

∂

∂z

[
ν̃o

∂ũo

∂z
− ν̃o

∂ũo

∂z

]
+

∂

∂z

[
ν

∂ũe

∂z

]
, (3.111)

which, in terms of Fourier harmonics, becomes

2iωu(2) = 2iωU (2)
∞ +

d
dz

[
ν

(
a(1)

2
du(1)

dz
+

du(2)

dz

)]
, (3.112)
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or
d
dz

(
ν

du(2)

dz

)
− 2iωu(2) = −2iωU (2)

∞ − d
dz

(
ν

a(1)

2
du(1)

dz

)
, (3.113)

where, for brevity, the complex conjugate terms (cc) have been omitted on both sides. Next,
we introduce the first-order solution, (3.66), into (3.113), retaining the first-order terms only.
This results in

d
dz

(
ν

du(2)

dz

)
− 2iωu(2) = −2iωU (2)

∞ + i
a(1)

2
F (1)(ζ)
F (1)(ζ0)

U (1)
∞ . (3.114)

The homogeneous equation corresponding to (3.114) is of the type discussed in Section 3.3,
while a particular solution is

U (2)
∞ − a(1)

2
F (1)(ζ)
F (1)(ζ0)

U (1)
∞ , (3.115)

where the first and second terms of (3.115) account for the first and second terms on the right-
hand side of (3.114). To show that this particular solution works, it must be recalled that F (1) is
a solution of the first-harmonic homogeneous equation, as it was discussed when obtaining the
particular solution in Section 3.4.2. By applying the bottom boundary condition, u(2)(ζ0) = 0,
we obtain

u(2) = U (2)
∞

(
1− F (2)(ζ)

F (2)(ζ0)

)
+

a(1)

2
U (1)
∞

(
F (2)(ζ)
F (2)(ζ0)

− F (1)(ζ)
F (1)(ζ0)

)
. (3.116)

The leading-order, second-harmonic shear stress is given by

τ (2)

ρ
= ν

(
a(1)

2
du(1)

dz
+

du(2)

dz

)
. (3.117)

By using the approximation given by (3.68), we obtain

τ
(2)
b

ρ
=

κu∗wc

4

[
a(1)U (1)

∞

[
2F (2)(ζ0)− F (1)(ζ0)

]

F (1)(ζ0)F (2)(ζ0)
+

2U
(2)
∞

F (2)(ζ0)

]
. (3.118)

As discussed in Section 3.4.1, (3.118) should not be used for large roughnesses.

3.5.3 Determination of a(1)

We compute a(1) by imposing [69]

u∗wca
(1) = 2e−iωt

∣∣∣∣
τb1

ρ
+

τb2

ρ

∣∣∣∣
1/2

. (3.119)

This yields

2a(1) =
τ b

τ
(1)∗
b

+
τ∗b

τ
(1)∗
b

+
τ

(2)
b

τ
(1)
b

− 3
5

τ
(2)∗
b

τ
(1)∗
b

τ
(1)
b

τ
(1)∗
b

. (3.120)

The result (3.120), presented in Reference [69], is obtained from (3.119) after lengthy algebra.
The calculation is outlined in Sections 4.1.2 and 4.2 of Reference [67].
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Substituting (3.69), (3.77), and (3.117) into (3.120) and using that τ∗b = τ b we obtain

a(1) = 2
τ b/ρ

κu∗wcU
(1)∗
∞ /F (1)∗(ζ0)

+
1
4

a(1)U
(1)
∞

[
2/F (1)(ζ0)− 1/F (2)(ζ0)

]
+ 2U

(2)
∞ /F (2)(ζ0)

U
(1)
∞ /F (1)(ζ0)

− 3
20

a(1)∗U (1)∗
∞

[
2/F (1)∗(ζ0)− 1/F (2)∗(ζ0)

]
+ 2U

(2)∗
∞ /F (2)∗(ζ0)[

U
(1)∗
∞ /F (1)∗(ζ0)

]2

U
(1)
∞

F (1)(ζ0)
. (3.121)

This is an expression of the form

Aa(1) + Ba(1)∗ = C, (3.122)

where the values of the complex constants, A, B, and C are given below. To solve, we write
a(1) = ar + iai, where the subindices r and i denote the real and imaginary parts, respec-
tively. The complex constants A, B, and C are decomposed into their real and imaginary parts
analogously. This yields a linear system for the two unknowns (ar and ai),

(Ar + Br)ar + (−Ai + Bi)ai = Cr (3.123)
(Ai + Bi)ar + (Ar −Br)ai = Ci. (3.124)

The solution is

ar =
(Ar −Br)Cr − (−Ai + Bi)Ci

∆
(3.125)

ai =
(Ar + Br)Ci − (Ai + Bi)Cr

∆
, (3.126)

where
∆ = A2

r −B2
r + A2

i −B2
i (3.127)

and

A = Ar + iAi = 1 +
1
2

F (1)(ζ0)
F (2)(ζ0)

(3.128)

B = Br + iBi =
3
10

U
(1)
∞ F (1)∗(ζ0)

U
(1)∗
∞ F (1)(ζ0)

(
2− F (1)∗(ζ0)

F (2)∗(ζ0)

)
(3.129)

C = Cr + iCi =
τ b

ρκu∗wc

4F (1)∗(ζ0)

U
(1)∗
∞

+
F (1)(ζ0)U

(2)
∞

U
(1)
∞ F (2)(ζ0)

−3
5

[
F (1)∗(ζ0)

U
(1)∗
∞

]2
U

(1)
∞

F (1)(ζ0)
U

(2)∗
∞

F (2)∗(ζ0)
. (3.130)

Since C is a function of τ b, the previous expressions must be evaluated iteratively: first assume
τ b = 0, then compute C and a(1), update τ b, and iterate until convergence.

The unknown parameters to completely characterize the boundary layer hydrodynamics are
τ b and G. The determination of these parameters depends on the geometry and flux conditions
imposed in the OWT. In Chapter 4 we will discuss how to obtain the solution in two cases of
interest: (1) pure waves and (2) waves combined with a current.
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3.6 Boundary layer thickness

The boundary layer thickness is given by

δw ≡ Al, (3.131)

where l ≡ κu∗wc/ω and u∗wc is the wave-current shear velocity based on the time-averaged
combined shear stress. The coefficient A is a function of the relative roughness, X, which is
defined by

X ≡ Abm,1/kn, (3.132)

where Abm,1 = ubm,1/ω is the near-bed first-harmonic orbital amplitude.

In order to obtain an expression for A, we run a modified version of our hydrodynamic
model, in which no external or wave-induced current is accounted for. In this modified, pure
wave version, the eddy viscosity is characterized by (3.22) for z ≤ δI , with u∗wc = u∗w, while
it is assumed to remain constant for z > δI . Thus, in this modified model, a-priori knowledge
of the boundary layer thickness, δw, is not required. We run this model for pure sinusoidal
waves with different values of the parameter X. For each run, we compute the amplitude of
the first-harmonic wave velocity over the water column. The boundary layer thickness, δw, is
defined as the highest elevation above the bottom where the maximum first-harmonic wave
velocity differs from the potential flow velocity by more than 1%, as illustrated in Figure 3-2.
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Figure 3-2: Computation of the boundary layer thickness for X = 10. The thick solid line
represents the maximum of the first harmonic of the velocity. The vertical dashed line indicates
the free-stream velocity magnitude. The horizontal dashed line indicates the boundary layer
thickness, defined as the highest level above the bottom at which the maximum velocity departs
by 1% from the free-stream velocity. In the case represented in the figure, the result is A = 4.57.

The results of these computations are shown in Figure 3-3, which also displays a fitted
approximation to the results. The maximum relative error of the fitted approximation is 0.9%,
so that the computed and fitted curves are almost indistinguishable in Figure 3-3. The fitting
is

A =





exp
{
0.149X−0.37 + 1.69

}
0.02 ≤ X ≤ 0.1

exp
{
1.99X−0.056 − 0.224

}
0.1 < X ≤ 100

exp
{
1.22X−0.10 + 0.538

}
100 < X ≤ 105.

(3.133)
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If the computation of the first-harmonic velocity were based on a constant (instead of time-
varying) eddy viscosity, the calculated values of A would differ by at most 6% from those shown
in Figure 3-3.
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Figure 3-3: Calculated (grey line) versus fitted (black line) values of the boundary layer thick-
ness parameter, A, for different values of the relative roughness. The crosses indicate the
boundaries between the three regions of the piecewise fitting, (3.133).

3.7 Two-Fourier approximation of asymmetric and skewed waves

The analytical model presented in this chapter was developed for an ideal wave consisting of two
harmonics. Here we discuss the ability of a two-harmonic approximation to represent a realistic
asymmetric and skewed wave shape. It is noted that the Fourier coefficients in a truncated
Fourier series provide the least-squares fit to the data. In this sense, the truncated Fourier
series is the best approximation to the original time series.

A realistic near-bed velocity time series for a skewed and asymmetric wave can be gener-
ated by using the polynomial equations presented in Section 2.2.4 of Chapter 2. Such a wave
shape is characterized by the skewness and asymmetry parameters, As and Sk, also defined in
Section 2.2.4. In this section we assess the ability of the analytical model to reproduce realistic
wave shapes of different degrees of asymmetry and skewness generated with these polynomial
equations. All cases discussed here have a near-bed wave velocity height of Ub = 2.5 m/s,
period of T = 8 s, and fixed bed roughness of kn = 0.33 mm. These conditions correspond
to the low-roughness case considered when comparing the conceptual and numerical models in
Section 2.2.4. While, for the reasons explained there, different roughnesses were used for the
numerical and conceptual models in Section 2.2.4, here all models are applied with the same
fixed bed roughness of kn = 0.33 mm.

The top plots in Figure 3-4 show comparisons between the near-bed velocities of purely
skewed waves given by the polynomial equations (solid lines) and their approximations using
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the two first Fourier harmonics (dashed lines). The bottom plots show the corresponding bed
shear stresses, as predicted using the numerical k-ε model discussed in Section 2.2 (thick solid
lines), the conceptual model discussed in Section 2.1 (thin solid lines), and the analytical model
based on the two-Fourier-harmonic approximation (thick dashed lines). As seen in the figure,
the two-harmonic approximation is reasonably accurate for a skewness up to Sk ≈ 0.25, while
the approximation becomes worse for larger values of Sk (such as Sk = 0.33 in Figure 3-4 (b),
(d)). Thus, the two-harmonic approximation is unable to reproduce realistic wave shapes with
Sk >∼ 0.25.
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Figure 3-4: (a), (b): purely skewed near-bed wave velocities (solid lines) and two-Fourier
component approximations (dashed lines). (c), (d): predictions of bed shear stresses by the
numerical k-ε model (thick solid lines), by the conceptual model presented in Chapter 2 (thin
solid lines), and by the analytical model presented in Chapter 3 using the two-Fourier approxi-
mation (thick dashed lines). Plots (a) and (c) correspond to a weakly skewed wave, and plots
(b) and (d) correspond to a moderately skewed wave. In both cases a fixed bed roughness of
kn = 0.33 mm is assumed.

As shown in Figure 3-4 (c), the bed shear stresses predicted by the analytical model for
skewed waves agree better with the numerical model than those predicted by the conceptual
model, particularly during the half-cycle of negative stresses. The conceptual model’s bed shear
stress overprediction seems to explain why we needed to use a sheet-flow roughness of kn = D50

to obtain good bedload results in Chapter 2. The new analytical model predicts a smaller bed
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shear stress at the crest, and thus we anticipate that the bedload predictions using the mobile-
bed roughness, which is larger than D50, will become closer to the experimental measurements.
This will be discussed in more detail in the following.

Figure 3-5 (a) and (b) show comparisons between the near-bed velocities of purely asymmet-
ric waves defined by the polynomial equations (solid lines) and their approximations using the
two first Fourier harmonics (dashed lines). Figure 3-5 (c) and (d) show the corresponding bed
shear stresses predicted using the numerical, conceptual, and analytical models. As illustrated
by the figure, the two-harmonic approximation is good for an asymmetry up to As ≈ 0.33,
while the approximation becomes worse for larger values of As (such as the intended As = 0.50
in (b) and (d)). In fact, the two-harmonic approximation is unable to reproduce realistic wave
shapes with As >∼ 0.33.
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Figure 3-5: (a), (b): purely asymmetric near-bed wave velocities (solid lines) and two-Fourier-
harmonic approximations (dashed lines). (c), (d): predictions of bed shear stresses by the
numerical k-ε model (thick solid lines), by the conceptual model presented in Chapter 2 (thin
solid lines), and by the analytical model presented in Chapter 3 using the two-harmonic ap-
proximation (thick dashed lines). Plots (a) and (c) correspond to a weakly asymmetric wave,
and plots (b) and (d) correspond to a moderately asymmetric wave. In both cases a fixed bed
roughness of kn = 0.33 mm is assumed.

In contrast with the skewed wave case (shown in Figure 3-4), the bed shear stresses predicted
by the three models for asymmetric waves are in good agreement (Figure 3-5). As discussed in
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Chapter 2, the conceptual model based on the mobile-bed roughness yields good bedload pre-
dictions under asymmetric waves. The good agreement between the conceptual and analytical
models’ shear stress pedictions in Figure 3-5 suggests that the analytical model based on the
mobile-bed roughness will also be able to yield good predictions for asymmetric wave cases, as
will be confirmed in Chapter 5.

Finally, we consider waves that are both asymmetric and skewed, illustrated in Figure
3-6. Plots (a) and (c) correspond to a moderately asymmetric and skewed wave (As = 0.33,
Sk = 0.25), which is well reproduced by its two first Fourier components. While, as noted above
plot (a), the values of Sk and As of the original wave and of its two-harmonic approximation
differ, such a difference is not necessarily indicative of a significant lack of agreement in the
wave shape, as seen in plot (a). Our definition of the parameters Sk and As is indeed rather
arbitrary. Plots (b) and (d) correspond to a strongly asymmetric and skewed wave (As = 0.50,
Sk = 0.33). In this latter case, the two-Fourier-harmonic near-bed velocity approximation
significantly differs from the actual velocity and, most importantly, the bed shear stress strongly
differs from that corresponding to the real velocity series.

Asymmetry and skewness of waves observed in the surf zone are in the range 0 ≤ As ≤ 2/3
and 0 ≤ Sk ≤ 1/2 [15]. According to the previous discussion, the two-harmonic approximation
is only acceptable for waves that are moderately asymmetric and skewed, with 0 ≤ As ≤ 1/3
and 0 ≤ Sk ≤ 1/4. The most common surf zone wave conditions, as well as most of the
experimental data discussed in this thesis, are within this allowable range or close to its upper
bound.

3.8 Comparison between the numerical and the analytical mod-
els’ bed shear stress predictions

Figure 3-4 above showed a comparison between bed shear stresses predicted by the numerical,
analytical, and conceptual models, based on a set value of kn (fixed-bed case). As discussed in
the previous section, the bed shear stress predicted by the analytical model for skewed waves is
closer to the numerical model than that predicted by the conceptual model, which overpredicts
the onshore bed shear stresses. This anticipates that the analytical model’s predictions based
on the mobile-bed roughness will agree with measured sheet-flow net transport rates (as will
be shown Section 5.2.1 in Chapter 5), while the conceptual model must be used with a smaller
effective roughness (kn = D50) to yield a good agreement (see Chapter 2). Here we consider
this argument more carefully and show that, while both the numerical and analytical models
yield good bedload predictions for skewed waves, their predicted bed shear stresses differ.

Figure 3-7 shows bed shear stresses predicted by the numerical, analytical, and conceptual
models corresponding to two representative experiments in Ribberink and Al Salem’s data set
for purely skewed waves [60], which are included in bedload comparisons in Chapters 2 and
5. In contrast with the fictitious cases in Figure 3-4, which used a prescribed kn = 0.33 mm
(fixed-bed case), predictions in Figure 3-7 are obtained with an iteratively determined mobile-
bed roughness. For the conceptual model, a different value of kn at crest and trough must
be computed using the crest and trough shear stresses respectively, as discussed in Chapter 2.
For the numerical and analytical model, a single value of kn, based on the maximum (crest)
shear stress is taken. Figure 3-7 shows an equally significant departure of the predictions of
the analytical and conceptual model with respect to those of the numerical model. However, as
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Figure 3-6: (a), (b): asymmetric and skewed near-bed wave velocities (solid lines) and two-
Fourier-harmonic approximations (dashed lines). (c), (d): predictions of bed shear stresses by
the numerical k-ε model (thick solid lines), by the conceptual model presented in Chapter 2
(thin solid lines), and by the analytical model presented in Chapter 3 using the two-harmonic
approximation (thick dashed lines). Plots (a) and (c) correspond to a moderately asymmetric
and skewed wave, and plots (b) and (d) correspond to a strongly asymmetric and skewed wave.
In both cases a fixed bed roughness of kn = 0.33 mm is assumed.
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the analytical model predicts a smaller onshore bed shear stress and a larger offshore bed shear
stress than the conceptual model, its predicted net sediment transport rates are smaller, and
thus closer to both the numerical model’s predictions and the measurements (see Table 3.1).
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Figure 3-7: (a) and (b): Stokes second-order near bed wave velocities corresponding to two
experimental cases reported by Ribberink and Al Salem [60] (Series B; left column: Case 14,
right column: Case 7). (c) and (d): predictions of bed shear stresses by the numerical k-ε
model (thick solid lines), by the conceptual model presented in Chapter 2 (thin solid lines),
and by the analytical model presented in Chapter 3 (thick dashed lines). Plots (a) and (c)
correspond to a weakly skewed wave, and plots (b) and (d) correspond to a moderately skewed
wave.

3.9 Summary

In this chapter we introduced an analytical model of the OWT boundary layer hydrodynamics.
The model, based on assuming a certain temporal dependence and spatial structure of the eddy
viscosity, predicts boundary layer velocity profiles and bed shear stresses. By accounting for the
time dependence of the eddy viscosity, we identify an interaction between the first harmonics
of the velocity and of the eddy viscosity that yields a net current (streaming). Such streaming
is absent for pure sinusoidal waves, since, in the absence of a second harmonic of the velocity,
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Table 3.1: Mobile-bed roughnesses and net sediment transport rates predicted by the numerical,
analytical, and conceptual models for two experimental conditions with pure skewed waves in
Series B by Ribberink and Al Salem [60].

Numerical Analytical Conceptual Measured
Case kn qsb kn qsb kn (crest) kn (trough) qsb qsb

(mm) (mm2/s) (mm) (mm2/s) (mm) (mm) (mm2/s) (mm2/s)
14 1.8 12.2 5.1 17.2 5.5 4.3 56.4 22.0
7 1.3 11.7 3.5 15.8 4.0 2.6 49.3 12.4

the first harmonic of the eddy viscosity is zero. A discussion on the model’s ability to represent
realistic surf zone wave conditions has also been presented.

In the expressions obtained in this chapter, the value of the mean bed shear stress, τ b,
and of the mean pressure gradient, G, are unknown. In the following chapter, considerations
on the specific geometry of the OWT will be used to compute this unknown parameters and
completely characterize the hydrodynamics.
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Chapter 4

Hydrodynamics of an oscillating
water tunnel

Using the boundary layer model developed in the previous chapter, here we consider the effect
of the cross-sectional geometry of an OWT, which is typically tall and narrow, to completely
characterize the OWT hydrodynamics. Two cases are considered: pure waves in a tall, narrow
OWT, and waves combined with a current in a tall, narrow OWT. Then, we compare the hydro-
dynamic predictions of the model with measurements for pure skewed waves, pure asymmetric
waves, and sinusoidal waves combined with a current.

4.1 Pure waves in a tall, narrow OWT

In an OWT, even when no current is prescribed and the cross-sectional flux is zero, a second-
order mean velocity arises from the interaction between the time-dependent eddy viscosity and
the time-dependent velocity, as reflected by the first term in (3.105). This mean velocity yields
a net flux. Since the net cross-sectional flux is zero, a mean pressure gradient along the OWT
is required to balance this local flux. Therefore, G ≡ dp/dx 6= 0, even when no mean current is
imposed.

Typical OWT sections are tall and narrow. For example, the working section of the Delft
Hydraulics (Deltares) OWT is b = 0.3-m wide and h = 0.8-m tall, as illustrated in Figure
4-1. For this geometry, the flow in most of the cross-section is governed by sidewall boundary
layer effects. In order to describe the hydrodynamic conditions, we start by considering the
sidewall boundary layer. Since the wave-induced current is initially unknown, we first assume
a value of u∗c/u∗wc (for example, 0.1). The spatial structure of the eddy viscosity is given by
(3.22), with δc = b/2. We obtain the mean velocity and mean bed shear stress by using (3.91),
(3.94), (3.103), (3.105), (3.125), and (3.126). Since the sidewalls are smooth, the value of ζ0 is
determined from (3.100). There are two unknowns in these equations, the mean sidewall shear
stress, τ sw (referred to as τ b in the equations), and the mean pressure gradient, G, which are
determined by imposing

∂u

∂z

∣∣∣∣
z=b/2

= 0 (4.1)

2
∫ b/2

z0

u(z′)dz′ = qsw, (4.2)
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Figure 4-1: Left: schematic of the working cross-section of the Delft OWT. Right: schematic
of the regions of influence of each boundary.

where qsw is the volume flux per unit height of sidewall. qsw is unknown, and it can be initially
assumed to be 0. (4.1) yields

τ sw ≈ −
(

b

2
− z0

)
G ≈ − b

2
G. (4.3)

Then G, the mean pressure gradient, is determined from (4.2) to be

G

ρ
=

qsw + C1

C2
, (4.4)

where

C1 =
1

κu∗wc

[
(δI − z0)

2

2
+ (b− δI) (δI − z0)− b2

4
ln

δI

z0

]

+
1

κu∗wcδI

[
δ2
J − δ2

I

2
− b

2
(δJ − δI)

](
b

2
− δJ

)

+
1

κu∗c

[
−δ2

K − δ2
J

2
+ b (δK − δJ)− b2

4
ln

δK

δJ

]

+
1

κu∗cδL

[
− b3

24
+

b2δK

4
− bδ2

K

2
+

δ3
K

3

]
. (4.5)

C2 = Re

{
a(1)∗

2
U (1)
∞

[(
b

2
− z0

)

+
i

F (1)(ζ0)


 l

2
+

(
δI − u∗c

u∗wc
δJ

)
dF (1)

dζ

∣∣∣∣∣
ζ=δJ/l

+
u∗c
u∗wc

(δK − δL)
dF (1)

dζ

∣∣∣∣∣
ζ=δK/l









 . (4.6)
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Then, u∗c is determined from

u∗c =

√
|τ sw|

ρ
, (4.7)

and this result is used to update the value of u∗c/u∗wc. This procedure is repeated iteratively.
Upon convergence, the mean pressure gradient, G, the centerline mean eddy viscosity, ν(z =
b/2) = νcl, and the centerline mean velocity, u(z = b/2) = ucl, are determined and can be used
to compute the bottom boundary layer flow.

Next, the bottom boundary layer is considered. The solution procedure is similar to the
sidewall boundary layer. The values of u∗c and u∗wc in the bottom boundary layer are in general
different from those in the sidewall boundary layer. Thus, we need again to assume a value
of u∗c/u∗wc, solve the hydrodynamics, update the value of u∗c/u∗wc, and iterate. The spatial
structure of the eddy viscosity is again given by (3.22), where δL is now chosen so that the value
of ν in the centerline is the same as obtained from the sidewall analysis. If the bottom is rough,
the value of ζ0 must be determined using (3.97). The two remaining unknowns are the mean
bottom shear stress, τ b, and the distance from the bottom, L, at which the mean velocity,
u, matches the centerline velocity, ucl (see Figure 4-1). These unknowns are determined by
imposing

∂u

∂z

∣∣∣∣
z=L

= 0 (4.8)

u(z = L) = ucl. (4.9)

(4.8) results in
τ b ≈ − (L− z0) G ≈ −LG. (4.10)

Combining this with (4.9) results in a quadratic equation for L whose solution is

L =
−b +

√
b2 − 4ac

2a
, (4.11)

where

a =
1

2u∗cδL
(4.12)

b =
1

u∗wc
ln

δI

z0
+

δJ − δI

u∗wcδI
+

1
u∗c

ln
δK

δJ
− δK

u∗cδL
(4.13)

c =
κ

G/ρ

[
ucl + Re

{
a(1)∗

2
U (1)
∞

}]
− δI − z0

u∗wc
− δ2

J − δ2
I

2u∗wcδI
− δK − δJ

u∗c
+

δ2
K

2u∗cδL
. (4.14)

With the mean bed shear stress determined from (4.10), the current shear velocity is updated
using

u∗c =

√
|τ b|
ρ

, (4.15)

and the value of u∗c/u∗wc is updated accordingly. The process is repeated until convergence.

Then, the top boundary layer is solved in exactly the same manner as the bottom boundary
layer, with the appropriate choice of (3.97) or (3.100) if the top is rough or smooth, respectively.

Once the mean velocities in the three boundary layers (sidewall, bottom, and top) have been
computed, the total mean flow through the whole cross-section is calculated. In the calculations
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presented later in this chapter, this is done in the following manner. The section is split into
regions governed by the sidewalls, top, and bottom, by matching the velocities at points located
at a distance b/4 and b/2 from the sidewalls (P , Q, R, and S in Figure 4-2). For example,
the location of point P is determined by imposing that the mean velocities of the sidewall and
bottom boundary layers match at P . In this way, the net cross-sectional flux is determined.
Then, the old value of qsw is corrected to yield a zero net flux, and the whole analysis is repeated
with the new value of qsw. Convergence is usually attained after few iterations.
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Figure 4-2: Split of the OWT cross section between areas of influence of the sidewall, top, and
bottom boundary layers (thick solid lines), by matching velocities at points P , Q, R, and S.
The shaded area corresponds to the main sidewall region, with a flux per unit height of qsw.
The specific dimensions indicated in the figure correspond to application of our model to Test
1 reported by Ribberink and Al-Salem [61], assuming the top boundary to be smooth.

4.2 Waves plus a current in a tall, narrow OWT

Next, we consider the case of a mean flow imposed in addition to the oscillatory motion. If
a total cross-sectional mean flux is prescribed, the solution procedure is identical to the one
described in Section 4.1, except that now the prescribed non-zero mean flux is imposed when
updating the value of qsw. On the other hand, if the mean flow is prescribed by means of a
reference current velocity (uref) at a certain elevation above the bottom (z = zref), the solution
procedure becomes simpler, as there is no need to iterate to match a prescribed value of the
total flux. The solution procedure for this latter case is as follows. First, we solve for the
sidewall boundary layer, in which the two unknowns, τ sw and G, are determined by imposing

∂u

∂z

∣∣∣∣
z=b/2

= 0 (4.16)

u(b/2) = uref . (4.17)
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(4.16) results in

τ sw ≈ − b

2
G, (4.18)

which, upon substitution into (4.17), yields
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=
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− δK
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. (4.19)

With G known, we then solve the bottom boundary layer. The only unknown, τ b, is
determined by imposing

u (zref) = uref . (4.20)

If zref ≥ δK , (4.20) yields the following equation for τ b:

τ b

ρ
=

{
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. (4.21)

If δJ ≤ zref < δK , the equation for τ b is
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=
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4.3 Comparison with hydrodynamic measurements in an OWT

4.3.1 Sinusoidal waves

To validate the analytical boundary layer model, we first compare its near-bed velocity pre-
dictions with OWT measurements for sinusoidal waves reported by Jonsson and Carlsen [36].
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The OWT used in these experiments was b = 0.40-m wide and h = 0.30-m high. Unlike OWTs
used in other experimental studies discussed below, this OWT is not tall and narrow, as we
had assumed in the previous discussion. This means that the centerline flow is likely to be
governed by the bottom boundary layer, and not by the sidewalls. However, since here we
will only apply the model to predict the first and third harmonics of the velocity (and not the
mean flow), the cross-sectional geometry of the OWT is of little importance. The goal of the
comparison presented here is to show that, even for a purely sinusoidal wave, a third-harmonic
near-bed velocity is present. This cannot be captured by a constant eddy viscosity model, but
requires to account for the eddy viscosity time dependence.

The experimental conditions in Jonsson and Carlsen’s experiments are summarized in Table
4.1. The values of kn in the table are reported by Trowbridge and Madsen [68] when comparing
their model with Jonsson and Carlsen’s data set; they had been obtained by Grant [24] by
fitting a logarithmic velocity profile to the data.

Table 4.1: Experimental conditions reported by Jonsson and Carlsen [36].
Case T (s) Abm,1 (cm) kn (cm)
Test 1 8.39 285 1.59
Test 2 7.20 178 7.50

Figures 4-3 and 4-4 show comparisons between the first- and third-harmonic velocity ampli-
tudes and arguments predicted by our model and Jonsson and Carlsen’s Test 1 measurements.
Figures 4-5 and 4-6 show analogous comparisons for Test 2. As seen in Figures 4-3 and 4-5,
the first-harmonic velocity is well predicted by the model; however, the location of the velocity
overshoot (indicative of the boundary layer thickness) is overpredicted by a factor of about 2.
The first-harmonic velocity predictions near the bottom, which are most important for sediment
transport computations, are very good. By contrast, the first-harmonic velocity predictions of
Trowbridge and Madsen’s model (see References [67] and [68]), which assumes a different verti-
cal structure of the eddy viscosity, are better than ours far from the bed better and worse than
ours near the bed (errors in the first-harmonic amplitude of about 20% for Test 2, and errors
in the first-harmonic argument of about 0.15 rad). As discussed by Trowbridge and Madsen,
accurate prediction of the first harmonic is largely insensitive to the assumed time dependence
of the eddy viscosity, and it mostly depends on the accuracy of its assumed vertical structure.
The comparison with the third harmonic offers a more relevant test of the time-dependence
eddy viscosity model, which, for a sinusoidal wave, is identical to Trowbridge and Madsen’s.
Our model underpredicts the third-harmonic velocity amplitude by an amount comparable to
that reported by Trowbridge and Madsen for Test 1, but significantly larger for Test 2. Simi-
larly, the discrepancy between predicted and measured third-harmonic arguments is similar to
Trowbridge and Madsen’s for Test 1, but larger for Test 2. Such quantitative discrepancy is
strongly dependent on the value of a(2), and thus on the choice of closure to compute this value.
There is however a good qualitative agreement between predictions and measurements of the
third harmonic, which supports our approach to modeling the eddy viscosity time dependence.

4.3.2 Pure skewed waves

Here we compare the hydrodynamic results of our model with measurements by Ribberink and
Al Salem [61]. These experiments were conducted in the Delft OWT, which has a cross section
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Figure 4-3: Predicted (solid line) and measured (+) first-harmonic velocity amplitudes (top
figure) and arguments (bottom figure) for Jonsson and Carlsen’s Test 1 [36].
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Figure 4-4: Predicted (solid line) and measured (+) third-harmonic velocity amplitudes (top
figure) and arguments (bottom figure) for Jonsson and Carlsen’s Test 1 [36]. The horizontal
error bars represent ±2 standard deviations.
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Figure 4-5: Predicted (solid line) and measured (+) first-harmonic velocity amplitudes (top
figure) and arguments (bottom figure) for Jonsson and Carlsen’s Test 2 [36].
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Figure 4-6: Predicted (solid line) and measured (+) third-harmonic velocity amplitudes (top
figure) and arguments (bottom figure) for Jonsson and Carlsen’s Test 2 [36]. The horizontal
error bars represent ±2 standard deviations.
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of width b = 0.3 m and total height of 1.1 m. During the experiments, the bottom 30 cm were
filled with sand, so that the height of the flow cross section was h = 0.8 m. Measurements of
cross-sectional velocities and of sediment transport rates were recorded. Here we focus on the
former. Three cases were considered in the experiment. In one case waves were sinusoidal, and
no streaming was observed. This is consistent with our theory, in which a second harmonic of
the velocity is necessary to yield a first harmonic of the eddy viscosity and thus streaming. In
the other two cases, referred to as Test 1 and Test 2, the waves were second-order Stokes (i.e.,
skewed but symmetric). The wave and sediment characteristics are summarized in Table 4.2.
In these cases, a mean streaming was observed. In this section we compare the instantaneous
and mean (streaming) velocities predicted by our model with the measurements.

Table 4.2: Experimental conditions for the skewed wave cases reported by Ribberink and Al
Salem [61].

Case U
(1)
∞ U

(2)
∞ T D50

(m/s) (m/s) (s) (mm)
Test 1 0.8082 0.2586 6.5 0.21
Test 2 0.8171 0.2288 9.1 0.21

Since the cross section of the OWT is tall and narrow, we expect the flow in most of the
cross section to be governed by the sidewall boundary layers. This corresponds to the case of
pure waves in a narrow OWT discussed in Section 4.1. Applying our model as discussed in
that section, we predict instantaneous and mean velocities, which we can compare with the
experiments. Since the bottom is covered with movable sediment, the hydraulic bed roughness
is modeled using Herrmann and Madsen’s formula [28], (2.36). The mobile-bed roughness,
which depends on the maximum bed shear stress, is determined iteratively. It is noted that
the ceiling of the Delft OWT has a rusty surface of unknown roughness. However, the velocity
profiles near the bottom are very insensitive to the value of the ceiling roughness, as discussed
below.

Figure 4-7 shows a comparison between the predicted and measured mean velocities for
Tests 1 and 2, assuming the ceiling of the OWT to be smooth (kn = 0). Positive velocities
correspond to motion away from the piston, i.e., in the direction opposite to the mean pressure
gradient. The model correctly predicts negative mean velocities in the region closest to the
boundary, and positive velocities above. The negative velocities near the boundary are induced
by the interaction between the first harmonics of the eddy viscosity and the velocity, as shown by
(3.105), and the positive velocities farther above the boundary are a consequence of conservation
of total mass in the tunnel. The magnitude of the maximum positive and negative velocities, of
about 3 cm/s, is also correctly reproduced by the model. However, the height of the region of
negative velocities is slightly overpredicted by the model. The predictions shown in the figure
correspond to our definition of the boundary layer thickness based on a 1% departure from
the free-stream velocity. A better agreement can be obtained by defining the boundary layer
thickness using a larger percentage; however, this will worsen the agreement with the current
velocity measurements in the cases with an imposed current, discussed in Section 4.3.4. The
crosses in the figure indicate the boundaries between the different regions of the piecewise eddy
viscosity, shown in Figures 4-8 (c) and 4-9 (c). For the bottom boundary layer in Tests 1 and
2, the current is so weak that δwc > δw, and therefore the third region of the piecewise eddy
viscosity defined by (3.22) does not exist. As a result, there is a jump in the eddy viscosity
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value at z = δw ≈ 6 cm, which produces a kink in the velocity profile, apparent in Figure 4-7
(b).
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Figure 4-7: Predicted (solid line) and measured (circles [61]) mean velocities for (a) Test 1 and
(b) Test 2. The crosses indicate the boundaries between the different regions of the piecewise
eddy viscosity. The OWT’s ceiling is assumed to be smooth (kn = 0 at the top).

Figures 4-8 and 4-9 show the sidewall and bottom boundary layer characteristics predicted
for Tests 1 and 2, respectively. The corresponding velocity profiles in the bottom boundary
layer are shown in Figure 4-7. While the centerline velocity is positive, there is also a region of
negative mean velocities near the sidewalls, analogous to the region near the bottom. Figures
4-8 (d) and 4-9 (d) show how the model splits the cross section to compute fluxes, following the
procedure described in Section 4.1. Since the bottom is rough and the sidewalls smooth, the
region governed by the bottom boundary is larger, in the sense that the line that separates the
bottom and sidewall regions forms an angle of more than 45◦ with the horizontal. In contrast,
since both the sidewall and top boundaries are assumed smooth, the separating angle between
the sidewall and top regions is exactly 45◦.

Figure 4-10 differs from Figure 4-7 in that the ceiling is now assumed rough, with a roughness
equal to the sediment diameter (kn = D50 = 0.21 mm). As the ceiling surface is a rusty metal,
its actual roughness is probably smaller than this value. As shown in the figure, the effect of the
larger ceiling roughness on the predicted near-bottom velocities is minimal. The larger ceiling
roughness produces a larger top boundary layer thickness, thus a larger negative flow near the
top. This larger flow near the top is balanced by a slightly larger mean free-stream velocity,
which is hardly noticeable when comparing Figures 4-7 and 4-10. An analogous calculation
assuming a very rough ceiling (kn = 1 mm) only produces a slightly larger mean free-stream
velocity. Therefore, we conclude that the effect of the unknown top roughness is negligible.
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Figure 4-8: Predicted hydrodynamic characteristics for Test 1 [61]: (a) eddy viscosity in the
sidewall boundary layer, (b) mean velocity profile in the sidewall boundary layer, (c) eddy
viscosity in the bottom boundary layer, (d) split of the cross-section between sidewall, bottom,
and top boundary layers (see discussion in Section 4.1).

97



0 0.5 1

x 10
−4

0

0.02

0.04

0.06

0.08

ν(m2/s)

x
(m

)

(a)

−0.02 0 0.02 0.04
0

0.05

0.1

0.15

u0(m/s)

x
(m

)

(b)

0 1 2

x 10
−4

0

0.05

0.1

0.15

0.2

ν(m2/s)

z
(m

)

(c) (d)

0.15 m 0.15 m

0.
80

 m

0.
20

 m

0.
13

 m

0.
15

 m

0.
07

5 
m

Figure 4-9: Predicted hydrodynamic characteristics for Test 2 [61]: (a) eddy viscosity in the
sidewall boundary layer, (b) mean velocity profile in the sidewall boundary layer, (c) eddy
viscosity in the bottom boundary layer, (d) split of the cross-section between sidewall, bottom,
and top boundary layers (see discussion in Section 4.1).
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Figure 4-10: Predicted (solid line) and measured (circles [61]) mean velocities for (a) Test 1
and (b) Test 2. The OWT’s ceiling is assumed to be rough (kn ≈ D50 = 0.21 mm at the top).

Figure 4-11 shows the predicted and measured instantaneous velocities along the centerline
of the OWT and near the bottom boundary. The colors of the solid lines (predictions) and
symbols (measurements) correspond to different phases over the wave period. As shown in
the figure, the thickness of the boundary layer (identifiable by the overshoot in the velocity
profile) is well predicted by the model. The agreement between predictions and measurements
is good near the wave crest (phase of ≈ 90◦) and trough (phase of ≈ 270◦) and bad near the
zero up-crossing (phase of ≈ 0◦). The reason for this lack of agreement is that the measured
free-stream velocity near the zero up-crossing significantly diverges from the Stokes second-
order free stream velocity intended in the experiment. This intended free-stream velocity was
used as a model input, and corresponds to the asymptotic value of the predicted instantaneous
velocity at the upper edge of the boundary layer. The lack of agreement between intended
and measured free-stream velocities is shown in Figure 4-12, where the solid line indicates
the experimentally intended free-stream velocity (used as the model input) and the symbols
indicate the velocities measured at 40 cm above the boundary. The symbols used in Figures
4-11 and 4-12 consistently correspond to the same phases, showing that the worst agreement
between predicted and measured instantaneous velocities (circles, phase of 0◦) correspond to
the worst agreement between the intended and the actual free-stream velocities. At this phase,
the intended free-stream velocity was −0.26 m/s, while the measured velocity was 0.02 m/s.
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Figure 4-11: Predicted (solid lines) and measured (symbols [61]) instantaneous near-bed veloc-
ities for Test 1. The OWT’s ceiling is assumed to be smooth (kn = 0 at the top).
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Figure 4-12: Intended (solid line) and measured (symbols [61]) free-stream velocities at 4.0 cm
above the bed for Test 1.
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4.3.3 Pure asymmetric waves

Next, we test the model using the experimental results obtained in University of Aberdeen by
Van der A et al. [70]. These experiments investigated the flow in an OWT for pure asymmetric
waves. The Aberdeen OWT has a cross section of b = 0.3 m by a total height of 0.75 m. During
the experiments, a false plywood bottom reduced the effective height to h = 0.5 m. Two series of
experiments were run, using a coarse sand (D50 = 0.46 mm) or a gravel (D50 = 5.65 mm) glued
to the bottom. Within each series, different wave conditions were considered. The sidewalls
and ceiling are smooth. To illustrate the application of our model to these experiments, we
present the results for Case S755010c, for which As = 0.33, T = 5 s, ubm = 1.00 m/s, and
D50 = 0.46 mm. To apply our model, we assume a wave velocity given by the two first Fourier
harmonics of the intended wave velocity,

ub(t) = 0.9573 cos(ωt) + 0.2393 cos(2ωt + π/2), (4.23)

with ω = 2π/5 rad/s. The accuracy of this two-Fourier-harmonic approximation is illustrated
in Figure 4-13. The near-bed velocity approximation has a smaller asymmetry (As = 0.24) and
slightly larger maximum value (ubm = 1.05 m/s) than the intended and actual time series. The
general ability of a two-Fourier component approximation to reproduce an asymmetric wave
shape is discussed in Chapter 5. As shown in Figure 4-13, there are also discrepancies between
the intended and experimentally achieved near-bed velocities.
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Figure 4-13: Measured (symbols), intended (dashed line), and 2-Fourier component approxi-
mation of the intended (solid line) free-stream velocities for Case S755010c [70].

We first apply the model assuming a narrow OWT and following the procedure detailed in
Section 4.1. Since the experiments used a fixed bed, the bottom roughness is taken equal to the
sediment diameter. Figure 4-14 shows the comparison between predicted and measured mean
velocities, and Figure 4-15 shows complementary hydrodynamic predictions of the model. In
contrast with the pure skewed wave case, the model predicts a positive mean velocity near the
bottom (although with a small region of negative velocities immediately next to the bottom).
This different behavior is caused by the first harmonics of the eddy viscosity and the velocity now
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being out of phase, while they were almost in phase for the pure skewed wave case (see discussion
in Section 4.4 below). To satisfy the zero mean flow constraint, a negative mean current is
predicted far from the boundaries. The model’s predictions disagree with the measurements,
which indicate the existence of a negative velocity close to the bottom, analogous to the pure
skewed case. It is believed that the system was in steady state and that the net cross-sectional
flow was indeed zero when the measurements were taken (Van der A, pers. comm.). The reason
for such disagreement, also obtained when applying the model to the other experimental cases,
is thus unknown. A possible cause is the difference between the actual near-bed velocity time
series and its two-Fourier approximation used by the analytical model (see Figure 4-13 and
discussion above). This difference could have a significant effect on the accuracy of second-
order predictions, such as the mean flow. We note that the measurements are restricted to
the 10 cm closest to the bottom, and the behavior of the mean velocity in the inner cross
section is unknown. The experiment was run for 35 wave cycles, and the shaded area in Figure
4-14 indicates the experimental error (one standard deviation on each side of the overall mean
values), considering the last 30 cycles only (since the first five cycles appear affected by the
initial conditions). The mean velocity for each cycle is highly variable near the bottom, as
indicated by the large standard deviation of the overall mean. It is noted that the measured
velocities near the bottom (of about 1.5 cm/s at only 0.8 mm above the top of the fixed grains)
appear abnormally high.
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Figure 4-14: Predicted (solid line) and measured (circles) mean velocities for Case S755010c
reported by Van der A et al. [70]. The shaded area indicates the experimental error (one
standard deviation on each side). The OWT is assumed narrow and the flux dominated by the
sidewall boundary layers. The OWT’s ceiling is assumed to be smooth (kn = 0 at the top).

When comparing the geometry of the Aberdeen OWT (h = 0.5 m by b = 0.3 m) with the
Delft OWT (h = 0.8 m by b = 0.3 m), we note that the assumption of a narrow OWT may
not hold for the Aberdeen case, where the shape of the tunnel section is closer to a square.
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Figure 4-15: Predicted hydrodynamic characteristics for Case S755010c [70]: (a) eddy viscosity
in the sidewall boundary layer, (b) mean velocity profile in the sidewall boundary layer, (c)
eddy viscosity in the bottom boundary layer, (d) split of the cross-section between sidewall,
bottom, and top boundary layers (see discussion in Section 4.1).
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As the bottom is rough, the region of influence of the bottom boundary layer is expected to
reach further into the section than that of the sidewall boundary layers. For this reason, the
most accurate simplified analysis should perhaps be based on assuming the centerline flow
to be entirely governed by the bottom and top boundary layers. To check this possibility, we
developed a modified version of the model in which the matching occurs between top and bottom
boundary layers only, while the sidewall boundary layers are ignored. In this modified version,
we assume the whole cross section to be characterized by the flow along the centerline. The
elevation (z-coordinate) of the matching between top and bottom boundary layers is unknown,
as are the mean bottom shear stress, the mean top shear stress, and the pressure gradient.
These unknowns are determined by matching the velocities and their derivatives, by imposing
a balance of mean forces, and by imposing a zero net flux. Figure 4-16 shows the resulting
mean velocity prediction, which is qualitatively similar to the prediction based on the narrow
OWT hypothesis, and it similarly disagrees with the measurements.
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Figure 4-16: Predicted (solid line) and measured (circles) mean velocities for Case S755010c
reported by Van der A et al. [70]. The shaded area indicates the experimental error (one
standard deviation on each side). The OWT is assumed wide and the flux dominated by the
top and bottom boundary layers. The OWT’s ceiling is assumed to be smooth (kn = 0 at the
top).

Figure 4-17 compares the predicted instantaneous near-bed velocities with the measure-
ments. The predictions are based on the narrow OWT hypothesis, although similar results are
obtained for the alternative analysis based on top and bottom boundary layers only. In spite
of the disagreement with measurements of the mean velocity (which arises from second-order
effects), the model’s predictions of instantaneous velocities are in reasonable agreement with
the measurements. Significant disagreement occurs however near the wave crest and trough,
since here there is also a significant departure between the measured free-stream velocity and
the values of the two-Fourier-component approximation used by the model (see Figure 4-13).
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Figure 4-17: Predicted (solid lines) and measured (symbols) instantaneous near-bed velocities
for Case S755010c [70]. The OWT is assumed narrow and the ceiling smooth.

Figure 4-18 shows the evolution in time of the boundary layer thickness, which illustrates
the physical significance of using a time-varying eddy viscosity. The upper plot shows the
experimentally intended free-stream velocity for the case studied in this section. The lower
plot was obtained by analyzing the measured and predicted instantaneous near-bed velocity
profiles and by determining the elevation of the highest extremum (that is, the overshoot of
the velocity profile), which is an estimate of the boundary layer thickness. The symbols in the
figure coincide with those used in Figure 4-17 for the same phases. As shown in the figure,
the time-varying eddy viscosity model reproduces the time dependence of the boundary layer
thickness reasonably well. It is noted that the sudden reduction of boundary layer thickness
at mid cycle corresponds to the change of direction of the free-stream velocity, although the
former occurs in anticipation of the latter, due to the lag between near-bed and free-stream
velocities. The anomalous behavior shown by the model towards the end of the wave period
is due to the fact that the overshoot becomes essentially flat (as can be observed in Figure
4-17, line of phase 336◦), which causes the extremum to suddenly jump to a higher location.
The anomalous behavior therefore merely indicates that using the overshoot in the velocity
profile may not be the best choice for defining the boundary layer thickness. It is noted that, as
discussed in Chapter 2, the boundary layer thickness is smaller under the crest than under the
trough of an asymmetric wave, although the difference in thickness is small (2.8 cm measured
at phase of 144◦ versus 3.1 cm measured at phase of 336◦).
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Figure 4-18: Upper plot: intended near-bed velocity for Case S755010c [70]. Lower plot: Mea-
sured position of the highest extremum of the instantaneous velocity (symbols) and predicted
values (solid line).

4.3.4 Waves plus a current

Next, we apply our model to cases of sinusoidal waves combined with a current reported by
Dohmen-Janssen [9]. The experiments were performed in the Delft OWT (b = 0.3 m, h =
0.8 m). The wave and sediment conditions of the series considered here are summarized in
Table 4.3. Our model is applied using the procedure described in Section 4.2, using Herrmann
and Madsen’s formula to predict the mobile-bed roughness. Comparisons of measured and
predicted current profiles are shown in Figures 4-19, 4-20, and 4-21. In the figures we also show
the application of a modified version of Grant and Madsen’s wave-current model (see Appendix
B). While both models yield good predictions, the simpler Grant and Madsen’s model, based on
a time-invariant eddy viscosity, yields a better agreement with the experimental measurements.
It is noted that the new analytical model predicts a lower wave-current shear velocity than
Grant and Madsen’s, and consequently it predicts a milder slope of the current profile within
the wave boundary layer, as well as a smaller mobile-bed roughness (by a factor of about 1.5)
for the cases with a mobile bed (see Table 4.3 and Figure 4-21).

4.4 Summary

In this chapter we used the boundary layer model from Chapter 3 to characterize the hydro-
dynamics of tall, narrow OWTs. Cases with and without an imposed current were discussed.
Then, the hydrodynamical predictions of the model were compared with experimental measure-
ments of the mean OWT streaming and of instantaneous velocity profiles. For a free-stream
velocity with a non-zero second harmonic, the sign of the streaming predicted by the model
depends on the shape of the wave. For a purely skewed wave, the velocity and the eddy viscosity
are approximately in phase, and the streaming near the boundaries is negative (i.e., opposite to

106



Table 4.3: Experimental conditions for wave-current cases reported by Dohmen-Janssen [9] and
roughnesses predicted by Grant and Madsen’s and the new analytical models.

Case zref uref ubm T D50 bed condition kn

GM New
(m) (m/s) (m/s) (s) (mm) (mm) (mm)

G5 0.10 0.45 0.95 7.2 0.21 fixed 0.21 0.21
G6 0.10 0.45 1.50 7.2 0.21 fixed 0.21 0.21
D1 0.10 0.24 1.47 7.2 0.13 mobile 7.2 4.7
D2 0.10 0.24 1.47 7.2 0.21 mobile 7.4 4.9
D3 0.10 0.24 1.47 7.2 0.32 mobile 7.7 5.2
T1 0.10 0.25 1.10 4.0 0.13 mobile 4.9 3.0
T2 0.10 0.25 1.10 12.0 0.13 mobile 3.5 2.2
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Figure 4-19: Measurements (circles), predictions by Grant and Madsen’s model (dashed line),
and predictions by the new model (solid line) for mean velocities near the bottom in Series G
reported by Dohmen-Janssen [9].
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Figure 4-20: Measurements (circles), predictions by Grant and Madsen’s model (dashed line),
and predictions by the new model (solid line) for mean velocities near the bottom in Series D
reported by Dohmen-Janssen [9].
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Figure 4-21: Measurements (circles), predictions by Grant and Madsen’s model (dashed line),
and predictions by the new model (solid line) for mean velocities near the bottom in Series T
reported by Dohmen-Janssen [9].
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the direction of the crest velocity), which agrees with experimental observations. This situation
is illustrated in Figure 4-22, which corresponds to Ribberink and Al-Salem’s Test 1 of a purely
skewed wave. The solid line in the top plot represents the skewed near-bed velocity time series.
The middle plot shows the different harmonics of the eddy viscosity; in particular, it is noted
that the first-harmonic eddy viscosity (dashed line in middle plot) is almost in phase with the
first-harmonic near-bed velocity (dashed line in top plot). As a result, the product of the two
(thick curve in bottom plot) is positive over most of the cycle, and the average of this product
(thick straight line in bottom plot) is positive. According to (3.105), the streaming near the
boundary is opposite to the product of a(1) and U

(1)
∞ , which is proportional to the time-average

between the first harmonic eddy viscosity (∼ a(1)) and the near-bed velocity. This product is
positive in this case, and therefore the streaming is negative.

In contrast, for a purely asymmetric wave, the velocity and the eddy viscosity are typically
out of phase, in which case the streaming near the boundaries is positive (i.e., in the direction
of the crest velocity). This is illustrated in Figure 4-23, which corresponds to Van der A et
al.’s Case S755010c of a purely asymmetric wave. The solid line in the top plot represents
the asymmetric near-bed velocity time series. In this case, the first-harmonic near-bed velocity
(dashed line in top plot) and the first-harmonic eddy viscosity (dashed line in middle plot) are
out of phase, in the sense that their product (thick curve in bottom plot) is negative over most
of the wave period. As a consequence, the average of the product (thick straight line in bottom
plot) is negative, and the streaming near the boundary is positive. However, such streaming
prediction disagrees with the available experimental observations, in which the streaming near
the boundary for pure asymmetric waves is positive.

The model was also applied to predict current profiles in cases of waves combined with a
current. The predictive skill of the model is good, although good predictions of current profiles
can also be obtained by using a simpler model that assumes a time-invariant eddy viscosity.

In the following chapter, the model’s ability to predict bed shear stresses will be applied
to predict bedload transport rates due to asymmetric and skewed waves, in the absence or
presence of a current.
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Figure 4-22: Hydrodynamic predictions corresponding to Ribberink and Al-Salem’s Test 1
(purely skewed wave). Top: first-harmonic (dashed line) and total free-stream velocity (thick
solid line). Middle: zeroth (solid horizontal line at 1), first (dashed line), and second (dotted
line) harmonics of the normalized eddy viscosity, and total normalized eddy viscosity (thick
solid line). Bottom: time-series (thick curved line) and average value (thick horizontal line) of
the product of the first-harmonic free-stream velocity and the first-harmonic normalized eddy
viscosity.
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Figure 4-23: Hydrodynamic predictions corresponding to Van der A et al.’s Case S755010c
(purely asymmetric wave). Top: first-harmonic (dashed line) and total free-stream velocity
(thick solid line). Middle: zeroth (solid horizontal line at 1), first (dashed line), and second
(dotted line) harmonics of the normalized eddy viscosity, and total normalized eddy viscosity
(thick solid line). Bottom: time-series (thick curved line) and average value (thick horizontal
line) of the product of the first-harmonic free-stream velocity and the first-harmonic normalized
eddy viscosity.
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Chapter 5

Bedload in oscillating water tunnels

In this chapter we apply the analytical boundary layer model developed in Chapter 3 to predict
bedload in OWTs. Computation of the analytical results requires an iterative evaluation of
Kelvin functions. In order to simplify the computations, in this chapter we propose simple ap-
proximate analytical expressions to evaluate the bed shear stresses. With the bed shear stresses
calculated using either the exact analytical solution or the simplified approximate expressions,
we apply Madsen’s formula [41] to predict bedload. The predictions favorably compare with
sheet flow bedload measurements in OWTs for skewed waves, asymmetric waves, and com-
bined waves and currents. While the conceptual model presented in Chapter 2 required an
inconsistent choice of bed roughness to yield accurate sheet flow predictions for all these cases,
the analytical model consistently yields accurate predictions when using the total, mobile-bed
roughness.

5.1 Approximate evaluation of shear stresses

The bed shear stress is the relevant magnitude required to predict bedload. In this section
we present simple approximate expressions to evaluate the bed shear stress, both under pure
asymmetric and skewed waves and under waves combined with a current.

5.1.1 Approximate expressions to predict wave bed shear stresses

As in Chapter 3, consider a pure asymmetric and/or skewed wave whose velocity can be accu-
rately represented by its two first Fourier harmonics,

ub = ubm,1 cos(ωt) + ubm,2 cos[2(ωt + φ)], (5.1)

such that the second harmonic is small compared to the first. Here ubm,1 and ubm,2 are the
real amplitudes of the first and second harmonics, respectively, while the complex amplitudes
(which include phase information) have been denoted U

(1)
∞ and U

(2)
∞ . The bed shear stress

corresponding to a near-bed velocity given by (5.1) was obtained in Chapter 3. By neglecting
the time-averaged stress, which is small for pure waves, the bed shear stress can be written as

τb = τbm,1 cos(ωt + ϕ1) + τbm,2α cos[2(ωt + ϕ2α)] + τbm,2β cos[2(ωt + ϕ2β)]
+τbm,3 cos[3(ωt + ϕ3)]. (5.2)
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In this expression, the second harmonic is written as the sum of two terms, for reasons that
will be discussed below. It is noted that the wave-induced mean shear stress is neglected in this
approximate expression. By comparing bedload transport predictions for pure waves using the
exact analytical solution with and without the mean stress, we conclude that the effect of the
mean stress on the net bedload transport rate is typically smaller than 20%. As discussed in
Chapter 3, the first and third harmonics of the shear stress are of leading order and depend on
the first harmonic of the near-bed velocity only. Thus, we write

τbm,1 =
1
2
ρf1u

2
bm,1 (5.3)

τbm,3 =
1
2
ρf3u

2
bm,1, (5.4)

where the friction factors f1 and f3 are unknown functions of the relative roughness, X =
Abm,1/kn, with

Abm,1 = ubm,1/ω. (5.5)

The phase lags of the bed shear stress components are

ϕ1 = arg
{

τ
(1)
b

}
(5.6)

ϕ3 = arg
{

τ
(3)
b

}
/3. (5.7)

In order to determine these functions, we compute the exact analytical solutions of the
model presented in Chapter 3 for a range of relative roughnesses, 0.02 ≤ X ≤ 105. Specifically,
the model is applied without accounting for the wave-induced current, and the eddy viscosity
is assumed constant for z ≥ δI , as was also done in Section 3.6. The bed shear stresses are
computed by numerical evaluation of the spatial derivatives at z = z0, instead of using the
approximation given by (3.68) that was applied in Chapter 3. This is to avoid errors in cases
with large relative roughnesses. The friction factors and phase shifts for a range of relative
roughnesses are represented by the grey lines in Figures 5-1, 5-2, 5-3, and 5-4. The black
lines in the figures correspond to fitted expressions to the computed values. The analytical
expressions of the fittings are

f1 =





exp
{
17.59X−0.05 − 20.42

}
0.02 ≤ X ≤ 0.1

exp
{
10.17X−0.05 − 12.10

}
0.1 < X ≤ 100

exp
{
5.84X−0.11 − 7.54

}
100 < X ≤ 105

(5.8)

f3 =





exp
{−25.78X0.04 + 20.92

}
0.02 ≤ X ≤ 0.1

exp
{
10.23X−0.05 − 14.07

}
0.1 < X ≤ 100

exp
{
5.60X−0.11 − 9.32

}
100 < X ≤ 105

(5.9)

ϕ1(rad) =





0.660 0.02 ≤ X ≤ 0.045
−0.168(log10 X)2 − 0.105 log10 X + 0.825 0.045 < X ≤ 2
0.0202(log10 X)2 − 0.228 log10 X + 0.846 2 < X ≤ 105

(5.10)

ϕ3(rad) = −7.19 · 10−3(log10 X)3 + 0.0967(log10 X)2 − 0.474 log10 X + 1.03, (5.11)

where the last expression is valid for 0.02 ≤ X ≤ 105.

Figure 5-5 shows a comparison between these fittings and the friction factor for maximum
bed shear stress due to a sinusoidal wave used in Grant and Madsen’s model (see Appendix
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Figure 5-1: Calculated (grey line) versus fitted (black line) first-harmonic friction factor as a
function of the relative roughness. The crosses indicate the boundaries between segments of
the piecewise fitting.
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Figure 5-2: Calculated (grey line) versus fitted (black line) third-harmonic friction factor as a
function of the relative roughness. The crosses indicate the boundaries between segments of
the piecewise fitting.
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Figure 5-3: Calculated (grey line) versus fitted (black line) phase shift between the first-
harmonic bed shear stress and the first-harmonic near-bed velocity as a function of the relative
roughness. The crosses indicate the boundaries between segments of the piecewise fitting.
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Figure 5-4: Calculated (grey line) versus fitted (black line) phase shift between the third-
harmonic bed shear stress and the first-harmonic near-bed velocity as a function of the relative
roughness.
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B). The figure shows Grant and Madsen’s friction factor for the maximum shear stress (solid
grey line) and the friction factor for the instantaneous maximum shear stress obtained from
adding the first and third harmonics predicted using the fittings (5.8) to (5.11) (solid black line).
The agreement is very good within the domain of validity of Grant and Madsen’s expression,
0.2 < X < 104. For very small relative roughnesses (X < 0.2), the analytical model predicts a
very large phase of the third harmonic (see Figure 5-4), to the point that the third harmonic
reduces the maximum shear stress with respect to the first harmonic, and thus the friction factor
for the maximum stress becomes smaller than that of the first harmonic. Such very small values
of X correspond however to unrealistically large roughnesses, of no practical importance. It
is also noted that, if the roughness elements are very large, the details of the flow around
individual roughness elements become relevant, which violates one of the assumptions of the
analytical model.
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Figure 5-5: Comparison between shear stress fittings and Grant and Madsen’s solution: fitted
first-harmonic friction factor (dashed line), fitted third-harmonic friction factor (dash-dotted
line), friction factor corresponding to the maximum combined shear stress (solid black line),
and Grant-Madsen’s friction factor (solid grey line).

Next, we need to evaluate the second harmonic. The second-harmonic shear stress arises
from the second-harmonic near-bed velocity, and it therefore reflects the effect of wave asymme-
try and skewness. In general, the second-harmonic bed shear stress is expected to be a function
of kn, ubm,1, ubm,2, and the phase shift between the near-bed velocity harmonics, φ. Therefore,
an expression of the second harmonic in terms of a friction factor is initially expected to be
cumbersome, as the friction factor would depend on three parameters. Instead of characterizing
the second harmonic bed shear stress using a single friction factor which depends on several
parameters, we will present an approximate expression that uses two friction factors, each of
which will depend on the relative roughness only. This approximate expression arises from
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examination of the analytical complex results for τ
(2)
b and a(1) obtained in Chapter 3, (3.118)

and (3.122), which reveals that, if we neglect the wave-induced mean shear stress, τ
(2)
b can be

written as a sum of terms that are proportional to U
(1)
∞ U

(2)
∞ plus terms that are proportional to

U
(1)
∞ U

(2)∗
∞ . Since U

(2)
∞ and U

(2)∗
∞ have opposite phases, it appears appropriate to separate these

two kinds of terms and write

τ
(2)
b ≈ τ

(2)
b,α + τ

(2)
b,β = τbm,2α exp{2iϕ2α}+ τbm,2β exp{2iϕ2β}, (5.12)

where

τ
(2)
b,α ≡ κu∗wc

4

[
a(1)

α U (1)
∞

(
2F (2)(ζ0)− F (1)(ζ0)

)

F (1)(ζ0)F (2)(ζ0)
+

2U
(2)
∞

F (2)(ζ0)

]
(5.13)

τ
(2)
b,β ≡ κu∗wc

4

[
a

(1)
β U (1)

∞

(
2F (2)(ζ0)− F (1)(ζ0)

)

F (1)(ζ0)F (2)(ζ0)

]
, (5.14)

where a
(1)
α and a

(1)
β are obtained by solving the system of equations (3.122) (i.e., in an analogous

way to the computation of a(1)) with C replaced by

Cα ≡ F (1)(ζ0)U
(2)
∞

U
(1)
∞ F (2)(ζ0)

(5.15)

Cβ ≡ −3
5

[
F (1)∗(ζ0)

U
(1)∗
∞

]2
U

(1)
∞

F (1)(ζ0)
U

(2)∗
∞

F (2)∗(ζ0)
, (5.16)

respectively. In these expressions we have ignored all terms that depend on the wave-induced
mean shear stress, τ

(0)
b . Such terms are small for pure waves, and its inclusion would make the

approximate bed shear stress expressions depend on the geometry and sidewall roughness of the
OWT. In the proposed decomposition, τb,α is proportional to U

(1)
∞ U

(2)
∞ , while τb,β is proportional

to U
(1)
∞ U

(2)∗
∞ . Thus, we write

τbm,2α =
1
2
ρf2αUbm,1Ubm,2 (5.17)

τbm,2β =
1
2
ρf2βUbm,1Ubm,2. (5.18)

With this decomposition, the friction factors f2α and f2β turn out to be functions of X =
Abm,1/ω and φ only, but independent of ubm,2/ubm,1. Further, the corresponding phase shifts,
ϕ2α and ϕ2β, defined by,

ϕ2α ≡ arg
{

τ
(2)
b,α

}
/2 (5.19)

ϕ2β ≡ arg
{

τ
(2)
b,β

}
/2, (5.20)

are also functions of X and φ only if they are referred to the phase of U
(1)
∞ U

(2)
∞ and U

(1)
∞ U

(2)∗
∞ ,

respectively. The phase of U
(1)
∞ is 0, the phase of U

(2)
∞ is φ, and the phase of U

(2)∗
∞ is (−φ).

As we must consider the difference between the phases of τb,α and U
(1)
∞ U

(2)
∞ and between the

phases of τb,β and U
(1)
∞ U

(2)∗
∞ , we look for fittings of the dependency on X and φ of

ϕ2α − φ ≡
(
arg

{
τ

(2)
b,α

}
/2− φ

)
(5.21)

ϕ2β + φ ≡
(
arg

{
τ

(2)
b,β

}
/2 + φ

)
. (5.22)
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Figures 5-6 to 5-9 show the values of f2α, f2β, ϕ2α, and ϕ2β computed using the analytical
model presented in Chapter 3 for a range of relative roughnesses 0.02 ≤ X ≤ 105 and for different
phase lags between the two harmonics of the near-bed velocity, φ. Unlike the computations
of first- and third-harmonic shear stresses presented above, for which the eddy viscosity was
assumed constant for z ≥ δI , the second-order bed shear stresses presented here are obtained
with the eddy viscosity vertical structure assumed in Chapter 3, which accounts for the eddy
viscosity reduction outside the wave boundary layer (typically at z = δw). Analogous to the
previous first- and third-harmonic computations, the second-harmonic bed shear stresses are
computed with a numerical evaluation of the spatial derivatives, in order to obtain accurate
values of the phase lags. In the figures, the solid grey lines correspond to φ = 0 (purely skewed,
second-order Stokes waves), the dashed grey lines to φ = π/8 (purely asymmetric waves), and
the dotted grey lines to φ = π/16 (asymmetric and skewed waves). As seen in the figures, the
friction factors and phase lags are weakly dependent on φ, and therefore it is possible to obtain
fitting expressions (solid black lines) that are good approximations for all 0 ≤ φ ≤ π/8. The
analytical expressions of these fittings are
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Figure 5-6: Calculated (grey lines) versus fitted (black line) τ
(2)
α component of the second-

harmonic friction factor as a function of the relative roughness. The different grey lines corre-
spond to different phase differences (φ) between the first and second harmonics of the near-bed
velocity. The crosses indicate the boundaries between segments of the piecewise fitting.

f2α =





exp
{−21.6X0.05 + 19.3

}
0.02 ≤ X ≤ 0.1

exp
{
9.78X−0.06 − 11.2

}
0.1 < X ≤ 100

exp
{
6.05X−0.11 − 7.42

}
100 < X ≤ 105

(5.23)

f2β =





exp
{
18.74X−0.05 − 23.2

}
0.02 ≤ X ≤ 0.1

exp
{
8.25X−0.07 − 11.85

}
0.1 < X ≤ 100

exp
{
5.50X−0.11 − 9.19

}
100 < X ≤ 105

(5.24)

ϕ2α(rad) = 4.8 · 10−3(log10 X)2 − 0.074 log10 X + 0.34 + φ (5.25)
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Figure 5-7: Calculated (grey line) versus fitted (black line) τ
(2)
β component of the second-

harmonic friction factor as a function of the relative roughness. The different grey lines corre-
spond to different phase differences (φ) between the first and second harmonics of the near-bed
velocity. The crosses indicate the boundaries between segments of the piecewise fitting.

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Abm,1/kn

ϕ
2
α

(r
a
d
)

 

 

Calculated, φ = 0
Calculated, φ = π/16
Calculated, φ = π/8
Fitted

Figure 5-8: Calculated (grey line) versus fitted (black line) phase shift between the τ
(2)
α com-

ponent of the second-harmonic bed shear stress and the second-harmonic near-bed velocity
as a function of the relative roughness. The different grey lines correspond to different phase
differences (φ) between the first and second harmonics of the near-bed velocity.
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Figure 5-9: Calculated (grey line) versus fitted (black line) phase shift of the τ
(2)
β component

of the second-harmonic bed shear stress relative to the second-harmonic near-bed velocity as a
function of the relative roughness (see text for details). The different grey lines correspond to
different phase differences (φ) between the first and second harmonics of the near-bed velocity.

ϕ2β(rad) = −6.3 · 10−3(log10 X)3 + 0.096(log10 X)2 − 0.53 log10 X − φ, (5.26)

where (5.25) and (5.26) are valid for all 0.02 ≤ X ≤ 105.

Finally, the total wave bed shear stress is evaluated from (5.2), where the right-hand side
terms are obtained from (5.3), (5.4), (5.17), and (5.18), with the friction factors and phase
shifts given by (5.8) to (5.11) and (5.23) to (5.26).

In order to obtain a complete set of fittings, we present a fitted expression to compute the
average combined shear velocity, u∗wc, used in defining the boundary layer thickness length
scale, l (see Section 3.6). This fitting is not strictly necessary, since once the instantaneous bed
shear stresses are evaluated using the expressions presented before, calculation of the average
shear velocity using a computer is straightforward. Equivalently, using the fitted expression,
the average shear velocity is obtained from

u∗wc =
∣∣∣∣
τb

ρ

∣∣∣∣
1/2

= ubm,1

√
1
2
ρfave, (5.27)

where the fitted expression for the average friction factor, fave, is

fave =





exp
{−53.28X0.02 + 49.73

}
0.02 ≤ X ≤ 0.1

exp
{
7.78X−0.07 − 10.30

}
0.1 < X ≤ 100

exp
{
5.87X−0.11 − 8.20

}
100 < X ≤ 105

(5.28)

The quality of this fitting is illustrated in Figure 5-10. In the figure, the computed values cor-
respond to the average bed shear stress resulting from summing the first and third harmonics
obtained from the fittings (5.8) to (5.11). For consistency with the order-of-magnitude argu-
ments used in the analysis, the contribution of the mean and second-harmonic shear stresses is
neglected here, as was also done when obtaining the analytical expression for u∗wc, (3.91).
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Figure 5-10: Calculated (grey line) versus fitted (black line) friction factor for the average shear
velocity as a function of the relative roughness. The crosses indicate the boundaries between
segments of the piecewise fitting.

5.1.2 Approximate computation of wave-current bed shear stresses

Consider the case of a weak current, colinear with the waves, and specified by a reference current
velocity uc = uref at an elevation z = zref above the bottom. The total bed shear stress is the
sum of the current and wave contributions

τb = τbc + τbw, (5.29)

where the wave shear stress, τbw, is determined as a sum of a first, second, and third harmonics,
which are computed using the friction factors and phase lag formulas presented in Section 5.1.1.
To be consistent with having neglected the mean wave shear stress in Section 5.1.1, which in
the analytical model was assumed to be of the same order as the current shear stress, the
approximate formulas for τbw must be applied with X = Abm,1/kn, i.e., as if the current were
not present. Therefore, unlike Grant and Madsen’s wave-current model (see Appendix B), no
coefficient Cµ different from 1 should be used to obtain X, even in the presence of a current,
which the analytical model assumes to be weak. Once τbw is determined, the combined shear
velocity is obtained from (5.27) and (5.28). Then, u∗c is determined using the reference current
velocity as follows. To simplify the calculation, it is suggested that the current velocity profile
is obtained by assuming τc ≈ τbc = constant. Then,

uc ≈ u2
∗c

∫ z

z0

1
ν(z′)

dz′, (5.30)

where the mean eddy viscosity is

ν(z) =





κu∗wcz 0 ≤ z ≤ δI

κu∗wcδI δI < z ≤ δJ

κu∗cz δJ < z ≤ δK

κu∗cδL δK < z,

, (5.31)
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where δI , δJ , δK , and δL were defined in Section 3.2. Introducing (5.31) into (5.30) and
integrating yields the following current velocity profile:

uc =





u2∗c
κu∗wc

ln
z

z0
z0 ≤ z ≤ δI

u2∗c
κu∗wc

(
z − δI + ln

δI

z0

)
δI < z ≤ δJ

u2∗c
κu∗wc

(
δJ − δI + ln

δI

z0

)
+

u∗c
κ

ln
z

δJ
δJ < z ≤ δK

u2∗c
κu∗wc

(
δJ − δI + ln

δI

z0

)
+

u∗c
κ

(
z − δK + ln

δK

δJ

)
δK < z.

. (5.32)

Next, we use (5.32) together with the known reference velocity to obtain an equation for u∗c.
If z0 < zref ≤ δI ,

u∗c =

√
κu∗wcuref

ln zref
z0

; (5.33)

else, if δI < zref ≤ δJ ,

u∗c =
√

κu∗wcuref

zref − δI + ln δI
z0

; (5.34)

else, if δJ < zref ≤ δK ,

u∗c =
u∗wc

2
(
δJ − δI + ln δI

z0

)


− ln

zref

δJ
+

√√√√(
ln

zref

δJ

)2

+
4κ

(
δJ − δI + ln δI

z0

)
uref

u∗wc


 ; (5.35)

else, if δK < zref

u∗c =
u∗wc

2
(
δJ − δI + ln δI

z0

)
[
− zref + δK − ln

δK

δJ

+

√√√√(
zref − δK + ln

δK

δJ

)2

+
4κ

(
δJ − δI + ln δI

z0

)
uref

u∗wc


 . (5.36)

It is noted that u∗c must be determined iteratively, as it depends on δJ and δK , which in turn
depend on u∗c. Finally, the current shear stress is

τc = ρu2
∗c. (5.37)

5.2 Bedload predictions and comparison with measurements

In this section we apply the shear stress predictions of the analytical model to compute sheet-
flow bedload, and we compare the results with experimental measurements. The analytical
model is applied in two ways: by using the analytical expressions of the bed shear stresses
derived in Chapter 3 and by using the polynomial fittings presented in Section 5.1. There are
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several differences between these two procedures. First, the analytical expressions involve ap-
proximate evaluations of the derivatives of Kelvin functions (based on assuming z0 ≈ 0), which
are accurate except for very large roughnesses, as discussed in Section 3.4.1. The polynomial
fittings are based on an exact (numerical) evaluations of these derivatives at z = z0 (and not
0). Second, the polynomial fittings do not include the wave-induced mean shear stress, which
for pure waves is typically responsible for a 10% of the net transport rate (and up to 25%
in some cases). Third, the fitting itself involves errors of about 5% in the magnitude of the
friction factors, which can result in errors of about 25% in the net sediment transport rates,
as will be discussed below. Fourth, unlike the analytical solutions, the fittings for the first and
third harmonics are based on a infinitely thick boundary layer, in which the sudden decrease
of the eddy viscosity magnitude at the outer edge of the boundary layer is not accounted for.
Finally, when currents are present, the current shear stress variation assumed by both models
is also different. The analytical model accounts for the linear current shear stress variation
with height, while the fitted model assumes a constant current shear stress over the boundary
layer, as discussed in Section 5.1.2. In spite of these differences, the net bedload transport rates
predicted by both models are generally in quite close agreement, as will be shown below.

Analogous to Chapter 2, we compute bedload using Madsen’s formula [41] (see Section 2.3
and Appendix A). As discussed in Chapter 2, it is unclear whether the effective bed shear stress
relevant to sheet-flow bedload should be based on a roughness equal to the sediment diameter
or on the mobile-bed roughness. When the latter assumption is made, the bottom roughness
becomes dependent on the bed shear stress, and it is determined iteratively using Herrmann
and Madsen’s formula, (2.36), [28]. In Chapter 2 we concluded that the conceptual model
presented there requires an ad-hoc choice of roughness to yield good predictions for all the
experimental cases considered. In this chapter we show that the analytical model from Chapter
3 and its application to tall, narrow OWTs discussed in Chapter 4 yield good predictions for
all experimental cases if the roughness is consistently chosen to be the mobile-bed roughness.

5.2.1 Skewed waves

Figures 5-11 and 5-12 show comparisons between predictions of the analytical model with
kn = D50 and the experimental data sets of purely skewed waves that were introduced in
Section 2.3.4. The predicted bed shear stresses used in Figure 5-11 were obtained using the
analytical expressions, while those used in Figure 5-12 were obtained using the polynomial
fittings. Only bedload-dominated cases, for which the predicted u∗m/ws < 2.7, are shown
in each figure. Both figures are very similar, as differences between the respective predicted
transport rates are generally small. In both figures the model underpredicts the measurements
by a factor of about 2.

There is however a noticeable disagreement between the predictions of the analytical model
and of the fitting for a few data points. Consider, for example, Ahmed and Sato’s Case 15,
with D50 = 0.74 mm, which corresponds to the full black square in Figures 5-11 and 5-12. The
net transport rate predicted by the analytical model is noticeably larger than 0.5 cm2/s, while
the prediction when using the fittings is noticeably smaller. Specifically, they differ by 27%.
This significant difference in the transport rates is due to a small difference in the predicted
shear stresses due to small inaccuracies of the fitted expressions and to having neglected the
wave-induced mean shear stress. For this case, X = 968, and the fitting yields f1 = 0.0082,
while the analytical model predicts f1 = 0.0085, that is, a 4% error. Correspondingly, the
difference in the predicted maximum shear stresses is also of a 4%, as illustrated in Figure 5-13.
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Figure 5-11: Comparison between measured and predicted average sediment transport rates
under skewed, symmetric waves for bedload-dominated cases (u∗m/ws < 2.7). Predictions are
obtained using the analytic boundary layer model with kn = D50. The solid line corresponds
to perfect agreement between predictions and measurements, while the dashed line is the least-
square fit to the data and corresponds to an underprediction by a factor of 1.9.
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Figure 5-12: Comparison between measured and predicted average sediment transport rates
under skewed, symmetric waves for bedload-dominated cases (u∗m/ws < 2.7). Predictions are
obtained using the approximate expressions for the bed shear stress with kn = D50. The solid
line corresponds to perfect agreement between predictions and measurements, while the dashed
line is the least-square fit to the data and corresponds to an underprediction by a factor of 2.4.
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An additional error arises from having neglected the wave-induced mean shear stress (0.4 Pa) in
the fitted expressions. As Figure 5-13 shows, these small errors due to the fitting inaccuracies
of the friction factors and phase shifts and due to having neglected the mean shear stress yield
instantaneous shear stresses for the fitted model that are generally more negative than those
of the analytical model, even if only by a 4% at most. The predicted net transport is very
sensitive to such a small but systematic error, and thus the predicted transport rates differ by
27%.
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Figure 5-13: Bed shear stresses predicted by the analytical model of Chapter 3 (solid line) and
by the approximate fittings presented in this chapter (dashed line) for Ahmed and Sato’s Case
15. The largest disagreement between predictions, at the maximum shear stress, is 4%. Both
models are applied by assuming kn = D50 = 0.74 mm.

Figures 5-14 and 5-15 show analogous comparisons between predictions of the analytical
model and experimental measurements. The model is now based on the mobile-bed roughness,
(2.36), and, as discussed in Section 2.3.2, the threshold for suspension effects is accordingly
taken as u∗m/ws < 4. Unlike the conceptual model discussed in Chapter 2, the analytical model
based on the mobile-bed roughness yields good bedload predictions for skewed waves, with slight
overpredictions by a factor of 1.2 or less. The exceptions are two datapoints corresponding to
large transport rates, for which the analytical model yields overpredictions by a factor of about
2. It is noted that the larger transport for these two data points is due to a larger value of the
near-bed velocity, while their skewness value is comparable to that of other data points. These
are therefore not the most skewed data points in the sets.

5.2.2 Asymmetric waves

Figures 5-16 and 5-17 show comparisons between predictions of the analytical model with
kn = D50 and the experimental data sets of purely asymmetric waves that were introduced
in Section 2.3.5. The predicted bed shear stresses used in Figure 5-16 were obtained using
the analytical expressions, while those used in Figure 5-17 were obtained using the polynomial
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Figure 5-14: Comparison between measured and predicted average sediment transport rates
under skewed, symmetric waves for bedload-dominated cases (u∗m/ws < 4). Predictions are
obtained using the analytic boundary layer model with mobile-bed roughness. The solid line
corresponds to perfect agreement between predictions and measurements, while the dashed line
is the least-square fit to the data (excluding the two data points with the largest transport
rates) and corresponds to an overprediction by a factor of 1.2.
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Figure 5-15: Comparison between measured and predicted average sediment transport rates
under skewed, symmetric waves for bedload-dominated cases (u∗m/ws < 4). Predictions are
obtained using the approximate expressions for the bed shear stress with mobile-bed roughness.
The solid line corresponds to perfect agreement between predictions and measurements, while
the dashed line is the least-square fit to the data (excluding the two data points with the largest
transport rates) and corresponds to an slight overprediction by a factor of 1.05.
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fittings. Only bedload-dominated cases, for which the predicted u∗m/ws < 2.7, are shown in
each figure. As shown in the figures, the model significantly underpredicts sediment transport
rates (by a factor of 2 or more). By contrast, Figures 5-18 and 5-19 show predictions based
on the mobile-bed roughness. Correspondingly, the threshold for suspension effects is taken as
u∗m/ws < 4. The predictions based on the mobile-bed roughness reasonably agree with the data
(within a factor of 1.3), although there is disagreement with Watanabe and Sato’s coarse grain
cases and with King’s steep rear cases (corresponding to offshore transport). The reliability
of the former is dubious (see discussion in Section 2.3.5), while the latter are within a factor
of 2 difference with respect to the model’s predictions. It is noted that King’s experiments
correspond to half waves started from rest. As will be discussed in Section 5.2.3, the bed
shear stresses under a half wave started from rest are smaller than those under steady-state
conditions, and therefore our model’s moderate overpredictions of King’s transport rates are
expected. We also recall that, unlike purely skewed Stokes second-order waves, application of
the analytical model to asymmetric wave conditions generally involves the approximation of
their near-bed velocity time series by the two first Fourier harmonics (see discussion in Sections
3.7 and 4.3.3), which will affect the accuracy of the transport rate predictions.
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Figure 5-16: Comparison between measured and predicted average sediment transport rates
under asymmetric, non-skewed waves for bedload-dominated cases (u∗m/ws < 2.7). Predictions
are obtained using the analytic boundary layer model with kn = D50. The solid line corresponds
to perfect agreement between predictions and measurements, while the dashed line is the least-
square fit to the data (underprediction by a factor of 2.3), and the dotted line is the least-square
fit to King’s data only (underprediction by a factor of 1.5).
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Figure 5-17: Comparison between measured and predicted average sediment transport rates
under asymmetric, non-skewed waves for bedload-dominated cases (u∗m/ws < 2.7). Predictions
are obtained using the approximate expressions for the bed shear stress with kn = D50. The
solid line corresponds to perfect agreement between predictions and measurements, while the
dashed line is the least-square fit to the data (underprediction by a factor of 3.0), and the
dotted line is the least-square fit to King’s data only (underprediction by a factor of 1.7).
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Figure 5-18: Comparison between measured and predicted average sediment transport rates
under asymmetric, non-skewed waves for bedload-dominated cases (u∗m/ws < 4). Predictions
are obtained using the analytic boundary layer model with mobile-bed roughness. The solid
line corresponds to perfect agreement between predictions and measurements, while the dashed
line is the least-square fit to the data (underprediction by a factor of 1.3), and the dotted line
is the least-square fit to King’s data only (overprediction by a factor of 1.3).
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Figure 5-19: Comparison between measured and predicted average sediment transport rates
under asymmetric, non-skewed waves for bedload-dominated cases (u∗m/ws < 4). Predictions
are obtained using the approximate expressions for the bed shear stress with mobile-bed rough-
ness. The solid line corresponds to perfect agreement between predictions and measurements,
while the dashed line is the least-square fit to the data (underprediction by a factor of 1.3), and
the dotted line is the least-square fit to King’s data only (overprediction by a factor of 1.1).
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5.2.3 Sinusoidal waves over a sloping bottom

Here we consider the application of the analytical model to predict bedload due to sinusoidal half
waves over a sloping bottom, measured by King [37] and discussed in Section 2.3.3 of Chapter 2.
Figures 5-20 and 5-21 show comparisons between predictions of the analytical model using the
polynomial fittings (the analytical expressions yield analogous results) and experiments. The
predicted bed shear stresses used in Figure 5-20 are based on kn = D50, while those used in
Figure 5-21 are based on the mobile-bed roughness. Only bedload-dominated cases, for which
the predicted u∗m/ws is smaller than the corresponding threshold (2.7 or 4), are shown in each
figure. Good agreement is obtained when using kn = D50, while use of the mobile-bed roughness
yields overpredictions by a factor of 3.2. This appears to contradict the conclusion reached in
previous sections, where good agreement was consistently obtained by using the mobile-bed
roughness.
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Figure 5-20: Comparison between measured [37] and predicted average sediment transport rates
over half a sinusoidal wave period for bedload-dominated cases (u∗m/ws < 2.7). Predictions
are obtained using the approximate expressions for the bed shear stress with kn = D50. The
bed was horizontal (β = 0), upslope in the direction of transport (β > 0), or downslope in the
direction of transport (β < 0). Vertical bars reflect the range of reported measurements. The
solid line corresponds to perfect agreement between predictions and measurements, while the
dashed line is the least-square fit to the data (overprediction by a factor of 1.2).

This disagreement is partially due to King’s runs consisting of half-wave cycles started from
rest. In applying the analytical model to the half-wave cases, a periodic sinusoidal wave was
assumed, and the shear stress corresponding to the onshore velocities were used in obtaining
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Figure 5-21: Comparison between measured [37] and predicted average sediment transport rates
over half a sinusoidal wave period for bedload-dominated cases (u∗m/ws < 4). Predictions are
obtained using the approximate expressions for the bed shear stress with mobile-bed roughness.
The bed was horizontal (β = 0), upslope in the direction of transport (β > 0), or downslope
in the direction of transport (β < 0). Vertical bars reflect the range of reported measurements.
The solid line corresponds to perfect agreement between predictions and measurements, while
the dashed line is the least-square fit to the data (overprediction by a factor of 3.1).
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the transport rate. This results in an overprediction of the shear stresses with respect to the
experimental conditions, as illustrated in Figure 5-22. The upper plot in Figure 5-22 shows
the near-bed velocity for one of King’s experimental cases (which corresponds to the rightmost
empty square symbol in Figures 5-20 and 5-21, with a measured transport of 1.1 cm2/s). The
lower plot shows the corresponding bed shear stresses obtained by the numerical k-ε model of
Chapter 2 started from rest (thin solid line), by the same model once steady-state is reached
(thick solid line), and by the analytical model used to obtain Figures 5-20 and 5-21, which
assumes periodic conditions (thick dashed line). Both models are applied using the mobile-bed
roughness. Comparison of the two numerical model predictions demonstrate that the steady-
state shear stresses are noticeably larger than those corresponding to a half wave started from
rest. Correspondingly, the numerical model started from rest yields an onshore transport rate of
1.9 cm2/s, while the steady-stated numerical model yields a rate of 2.8 cm2/s, that is, 1.5 times
larger. Thus, the fact that we are applying an analytical model for periodic waves to predict
impulsively started experiments partially accounts for the overpredictions obtained when using
the mobile-bed roughness in Figure 5-21. For this particular case, the analytical model predicts
a transport rate of 3.9 cm2/s, and the measured transport rate is 1.1 cm2/s.
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Figure 5-22: Upper plot: near-bed velocity for one of the experimental cases reported by King
(sinusoidal half-wave over a horizontal bottom). Lower plot: bed shear stresses predicted by
the numerical k-ε model of Chapter 2 started from rest (thin solid line) and once steady-state
is reached (thick solid line), and predictions using the approximate fittings presented in this
chapter (thick dashed line). Both models are applied using the mobile-bed roughness.

5.2.4 Waves plus a current

Figures 5-23 to 5-26 show comparisons between predictions of the analytical model with kn =
D50 and the experimental data set of sinusoidal waves plus a current [12] that was introduced
in Section 2.5.1. Figures 5-23 and 5-25 are based on the procedure discussed in Section 4.2 for
applying the analytical model to a combined wave-current case, while Figures 5-24 and 5-26
are based on the polynomial fittings for the wave shear stress and on the simplified evaluation
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of the current shear stress discussed in Section 5.1.2. Only bedload-dominated cases, for which
the predicted u∗m/ws is smaller than the suspension threshold (2.7 or 4, depending on the
roughness used), are shown in each figure. Taking the roughness as kn = D50 (Figures 5-23 and
5-24) yields significant underpredictions of the bedload transport rates (by a factor of 2.2 or
more). Predictions based on the mobile-bed roughness (Figures 5-25 and 5-26) reasonably agree
with the measurements: the analytical model (Figure 5-25) yields a mean overprediction by a
factor of 1.6 (but overpredicts some of the data points by a factor of 2), while the fitted model
(Figure 5-26) predicts well the whole data set. This difference between the analytical model
and the fittings arises from the different procedure for computing the current shear stresses:
the analytical model accounts for the linear current shear stress variation with height, while
the fitted model assumes a constant current shear stress over the boundary layer, which is the
same assumption used in Grant and Madsen’s model. The fact that the latter approximation
works better than the original analytical model appears consistent with the superior ability of
Grant and Madsen’s model to predict current velocity profiles, as discussed in Section 4.3.4.
The analytical model’s predictions shown here use a wave boundary layer thickness based
on a 1% departure from the free-stream velocity (see Section 3.6). If instead the boundary
layer thickness were based on a 3% departure from the free-stream velocity, good agreement
between the analytical model’s predictions and measurements would be obtained for all data
in Figure 5-25. This alternative boundary layer thickness definition would however ruin the
reasonable agreement with measured current velocity profiles discussed in Section 4.3.4. Given
the high sensitivity of predicted net sediment transport rates to relatively small changes in
the instantaneous bed shear stress predictions, the author is of the opinion that a factor of 2
discrepancy between predictions and measurements of net transport rates should be considered
a “good agreement”.

5.3 Summary

In this chapter we presented simple equations to compute bed shear stresses in OWTs. These
equations are polynomial fittings to the results of the analytical OWT model derived in Chapter
3. We also demonstrated the ability of the analytical model to consistently predict sheet flow
bedload with the shear stress based on the total, mobile-bed roughness. Accurate bedload
predictions are obtained for experimental cases of pure skewed waves, pure asymmetric waves,
and sinusoidal waves combined with a current. The analytical model thus avoids the inconsistent
choice of roughness that the conceptual model required.

While the predictive ability of the analytical bed shear stress model and its application
to compute bedload under asymmetric and skewed waves plus a current seems promising, the
number of studies of sheet flow bedload under asymmetric waves available to date is insufficient
for definitive verification of our model. In particular, the only consistent, bedload-dominated
sediment transport laboratory data available under asymmetric, periodic waves are, to the
author’s knowledge, the measurements by King [37]. Also, to the author’s knowledge, there are
no available sediment transport data of asymmetric and skewed waves plus a current in which
the wave asymmetry or skewness and the current are both significant. In this respect, the
results from the recent mobile-bed experiments by Van der A and O’Donoghue in the Aberdeen
OWT are eagerly anticipated.
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Figure 5-23: Comparison between measured [12] and predicted average sediment transport rates
in current direction for co-directional sinusoidal waves and currents for bedload-dominated cases
(u∗m/ws < 2.7). Predictions are obtained using the analytic boundary layer model with kn =
D50. The solid line corresponds to perfect agreement between predictions and measurements,
while the dashed line is the least-square fit to the data and corresponds to an underprediction
by a factor of 2.2.
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Figure 5-24: Comparison between measured [12] and predicted average sediment transport rates
in current direction for co-directional sinusoidal waves and currents for bedload-dominated cases
(u∗m/ws < 2.7). Predictions are obtained using the approximate fittings for the bed shear
stress with kn = D50. The solid line corresponds to perfect agreement between predictions and
measurements, while the dashed line is the least-square fit to the data and corresponds to an
underprediction by a factor of 3.3.
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Figure 5-25: Comparison between measured [12] and predicted average sediment transport
rates in current direction for co-directional sinusoidal waves and currents for bedload-dominated
cases (u∗m/ws < 4). Predictions are obtained using the analytic boundary layer model with
mobile-bed roughness. The solid line corresponds to perfect agreement between predictions and
measurements, while the dashed line is the least-square fit to the data and corresponds to an
overprediction by a factor of 1.6.
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Figure 5-26: Comparison between measured [12] and predicted average sediment transport rates
in current direction for co-directional sinusoidal waves and currents for bedload-dominated cases
(u∗m/ws < 4). Predictions are obtained using the approximate fittings for the bed shear stress
with mobile-bed roughness. The solid line corresponds to perfect agreement between predictions
and measurements, while the dashed line is the least-square fit to the data and corresponds to
an overprediction by a factor of 1.1.
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Chapter 6

Boundary layer streaming for a
propagating wave

In previous chapters we characterized the hydrodynamics and sediment transport in OWTs.
Unlike OWT conditions, sea waves are propagating. In this chapter we discuss how accounting
for wave propagation would affect the previous results. In a propagating wave the spatial
dependence of the velocity induces a new mechanism for boundary layer streaming and modifies
the mean and second-harmonic shear stresses. Here we are interested in determining how the
boundary layer streaming and the bedload sediment transport differ between a non-propagating
wave (such as in an OWT) and a propagating wave (in a wave flume or in the sea). Following
a previous study by Trowbridge and Madsen [67, 68, 69], we first outline how our previous
analysis can be extended to the case of a propagating wave. Unlike Trowbridge and Madsen,
our analysis accounts for imposed flux conditions (such as a weak current), and it uses a different
assumption for the vertical structure of the eddy viscosity. While these different assumptions
result in slightly different expressions, our derivation closely follows Trowbridge and Madsen’s
[67, 68, 69], to which the reader is referred for details. The expressions presented here are
implicit and can be easily evaluated with a computer. Since Trowbridge and Madsen obtained
simpler closed form solutions that can be evaluated very efficiently, in the final part of the
chapter we apply Trowbridge and Madsen’s expressions (instead of our own) to discuss the
effect of wave propagation on the boundary layer streaming and net bedload transport rates.

6.1 Problem definition

The definition of the problem is identical to that in Chapter 3. The boundary layer equations
are (3.1) and (3.2), the near-bed velocity is again represented by its two first Fourier harmonics,

ub = ub1 + ub2 = Re

{
U

(1)
∞
2

eiωt +
U

(2)
∞
2

ei2ωt + cc

}
, (6.1)

and the vertical and temporal structure of the eddy viscosity is that described in Section
3.2. The relative magnitudes of the second harmonic and the current with respect to the first
harmonic are respectively characterized by the small parameters λ and µ, defined by (3.6) and
(3.7). The third harmonic is also small (of order ε) compared to the first, see (3.53). Same as
in Chapter 3, λ ∼ µ ¿ ε < 1.
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By splitting the variables into even and odd harmonics (see (3.12) to (3.14)), the boundary
layer equation is written as

∂ (ũo + ũe)
∂t

+ (u + ũo + ũe)
∂ (u + ũo + ũe)

∂x
+ (w̃o + w̃e)

∂ (u + ũo + ũe)
∂z

= −1
ρ

∂

∂x
(p + p̃o + p̃e) +

∂

∂z

[
(ν + ν̃o + ν̃e)

∂

∂z
(u + ũo + ũe)

]
. (6.2)

Analogous to Chapter 3, we carry the analysis to second order and keep terms of order λ,
while neglecting any higher-order terms (such as terms of order λε or λ2). Time averaging (6.2)
and neglecting terms of O(λε) or higher yields

ũo
∂ũo

∂x
+ w̃o

∂ũo

∂z
= −1

ρ

∂p

∂x
+

∂

∂z

[
ν

∂u

∂z
+ ν̃o

∂ũo

∂z

]
. (6.3)

Subtracting (6.3) from (6.2), collecting odd and even terms, and neglecting terms of order O(λε)
or higher, we obtain

∂ũo

∂t
= −1

ρ

∂p̃o

∂x
+

∂

∂z

[
(ν + ν̃e)

∂ũo

∂z

]
(6.4)

∂ũe

∂t
+

[
ũo

∂ũo

∂x
− ũo

∂ũo

∂x

]

+
[
w̃o

∂ũo

∂x
− w̃o

∂ũo

∂x

]
= −1

ρ

∂p̃e

∂x
+

∂

∂z

[
ν̃o

∂ũo

∂z
− ν̃o

∂ũo

∂z

]
+

∂

∂z

[
ν

∂ũe

∂z

]
. (6.5)

6.2 The potential flow near the bottom

Next, we need to relate pressures and near-bed velocities. The potential flow velocities and
pressure, (U,W, p), are governed by the continuity and momentum equations,

∂U

∂x
+

∂W

∂z
= 0 (6.6)

∂U

∂t
+ U

∂U

∂x
+ W

∂U

∂z
= − ∂

∂x

p

ρ
(6.7)

∂W

∂t
+ U

∂W

∂x
+ W

∂W

∂z
= − ∂

∂z

p

ρ
. (6.8)

Combining the continuity equation for the potential flow, (6.6), with the continuity equation
for the boundary layer flow,

∂u

∂x
+

∂w

∂z
= 0, (6.9)

yields
∂ (U − u)

∂x
+

∂ (W − w)
∂z

= 0. (6.10)

Integrating (6.10) between z = z0 (where w = 0) and z →∞ (where w → W ), we obtain

W (z = z0) =
∂

∂x

∫ ∞

z0

(U − u) dz ∼ O((kδ)|U∞|) , (6.11)
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where k is the wavelength and δ is the boundary layer thickness. By accounting for the order
of magnitude of W near the bottom, (6.11), we conclude from (6.8) that

1
ρ

∂p

∂z
= O((kδ)|U∞|ω) . (6.12)

Therefore, treating the pressure as constant within the boundary layer is consistent with other
approximations involved in the boundary layer analysis. Further, using the same order of
magnitude arguments, (6.7) near the bottom reduces to

∂U

∂t
+ U

∂U

∂x
= − ∂

∂x

p

ρ
+ O((kδ)|U∞|ω) . (6.13)

Next, we decompose the pressure and the horizontal potential flow velocity in mean, odd, and
even harmonics:

p = p + p̃o + p̃e (6.14)
U = U + Ũo + Ũe. (6.15)

Introducing (6.14) and (6.15) into (6.13), separating into mean, odd, and even harmonics, and
neglecting terms of second order (λ2, µ2, λµ) or higher, we obtain

−1
ρ

∂p

∂x
= Ũo

∂Ũo

∂x
− G

ρ
(6.16)

−1
ρ

∂p̃o

∂x
=

∂Ũo

∂t
(6.17)

−1
ρ

∂p̃e

∂x
=

∂Ũe

∂t
+

[
Ũo

∂Ũo

∂x
− Ũo

∂Ũo

∂x

]
, (6.18)

where the last term on the right-hand side of (6.16) has been introduced to account for an
additional mean pressure gradient, G, necessary to match a prescribed total flux or reference
current velocity, as discussed in Chapter 3.

6.3 First-order analysis

Substituting (6.17) into (6.4) and assuming a near-bed velocity consisting of two Fourier har-
monics, (6.1), we obtain the first-order equation

∂ũo

∂t
=

∂ub1

∂t
+

∂

∂z

[
(ν + ν̃e)

∂ũo

∂z

]
. (6.19)

This first-order equation is identical to the non-propagating wave case, (3.52), and therefore
the first-order, first- and third-harmonic horizontal velocities are given by (3.66) and (3.75),
respectively. The vertical velocity is then obtained from the continuity equation,

∂ũo

∂x
+

∂w̃o

∂z
= 0. (6.20)

Therefore,
∂w̃o

∂z
= −∂ũo

∂x
=

k

ω

∂ũo

∂t
=

k

ω

(
∂ub1

∂t
+

1
ρ

∂τ1

∂z

)
(1 + O(ε)) , (6.21)
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where τ1 is the first-harmonic wave shear stress. In deriving (6.21) we have used the first-order
equation, (6.19) and the propagating wave relationship

∂

∂x
= − k

ω

∂

∂t
. (6.22)

Integrating (6.21) between z = z0 and z yields

w̃o =
k

ω

∂ub1

∂t
(z − z0) +

k

ω

(
τ1

ρ
− τb1

ρ

)
, (6.23)

as obtained by Trowbridge and Madsen [69]. Here, τb1 is the first-harmonic bed shear stress,
and terms of O(ε) have been neglected.

6.4 Second-order analysis: boundary layer streaming

The second-order analysis includes a zeroth-harmonic equation, which describes the streaming,
and a second-harmonic equation. Replacing the expression for the average pressure gradient,
(6.16), into the time-average boundary layer equation, (6.3), with the near-bed velocity given
by (6.1), yields, to leading order,

∂

∂z

[
ν

∂u

∂z

]
=

G

ρ
− ub1

∂ub1

∂x
+ ũo

∂ũo

∂x
+ w̃o

∂ũo

∂z
− ∂

∂z

[
ν̃o

∂ũo

∂z

]
, (6.24)

where terms of O(ε) have been neglected. The time average of the second and third terms on
the right-hand side of (6.25) is zero, and therefore

∂

∂z

[
ν

∂u

∂z
+ ν̃o

∂ũo

∂z

]
=

G

ρ
+ w̃o

∂ũo

∂z
. (6.25)

This equation is analogous to the second-order, zeroth-harmonic equation for the non-propagating
wave case, (3.101), except for the extra term involving w̃o on the right-hand side. Analogous
to (3.104), integration between z0 and z yields

du

dz
= −a(1)

4
du(1)∗

dz
− a(1)∗

4
du(1)

dz
+

1
ν

[
G

ρ
(z − z0) +

τ b

ρ
+

∫ z

z0

w̃o
∂ũo

∂z
dz

]
. (6.26)

Thus, the propagating wave case includes an extra integral term involving w̃o on the right-hand
side. Using integration by parts, (6.20), (6.22), and (6.23), this integral is evaluated to be

∫ z

z0

w̃o
∂ũo

∂z
dz = ũow̃o − k

ω

∫ z

z0

ũo
∂ũo

∂t
dz = ũow̃o =

k

ω
(z − z0) ũo

∂ub1

∂t
+

k

ω
ũo

(τ1 − τb1)
ρ

. (6.27)

To leading order in ε, the two time-averaged terms in (6.27) yield

ũo
∂ub1

∂t
= Re

{
−iω

u(1)U
(1)∗
∞

2

}
(6.28)

ũo (τ1 − τb1)
ρ

= Re

{
u(1)τ (1)∗

2ρ
− u(1)τ

(1)∗
b

2ρ

}
. (6.29)
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Thus, (6.26) can be rewritten as

du

dz
= Re

{
−a(1)

2
du(1)∗

dz

}
+

1
ν

[
G

ρ
(z − z0) +

τ b

ρ

+k(z − z0)Re
{
− i

2
u(1)U (1)∗

∞

}
+

k

ω
Re

{
u(1)τ (1)∗

2ρ
− u(1)τ

(1)∗
b

2ρ

}]
. (6.30)

Evaluating this expression at z = L, the outer edge of the region of influence of the boundary
layer (see Chapter 4), yields

τ b = −G (L− z0) +
k

ω
Re

{
U

(1)
∞ τ

(1)∗
b

2

}
, (6.31)

where the second term is due to wave propagation. Integration of (6.30) between z0 and z yields
the following mean velocity profile:

u(z) = −Re

{
a(1)∗

2
U (1)
∞

(
1− F (1)(ζ)

F (1)(ζ0)

)}
+

∫ z

z0

1
ν(z′)

[
(z′ − L)

G

ρ

]
dz′

+
k

∣∣∣U (1)
∞

∣∣∣
2

2ω
Re

{ [
F (1)(ζ)

]2

2
[
F (1)(ζ0)

]2 −
F (1)(ζ)
F (1)(ζ0)

+
1
2

+
κu∗wc

2F (1)∗(ζ0)
IF − iωIz

}
, (6.32)

where

IF ≡
∫ z

z0

F (1)(ζ ′)
F (1)(ζ0)

dz′ (6.33)

Iz ≡
∫ z

z0

(z′ − z0)
ν(z′)

(
1− F (1)(ζ ′)

F (1)(ζ0)

)
dz′. (6.34)

The first term on the right-hand side of (6.32) corresponds to the streaming due to the eddy
viscosity time dependence. As shown by the explicit expressions derived by Trowbridge and
Madsen (Equation 36 in Reference [69]), the first-harmonic eddy viscosity coefficient, a(1), is
the sum of a component due to wave propagation and another component independent of wave
propagation. Thus, this first term consists of a component purely due to the time-varying eddy
viscosity (and independent of whether the wave is propagating) and another component that
reflects an interaction between wave propagation and eddy viscosity time dependence. The
second term on the right-hand side of (6.32), not accounted for by Trowbridge and Madsen,
depends on the value of the constant G. This is the term through which a total cross-sectional
flux or an external current are prescribed, and it therefore corresponds to an imposed flux
condition external to the boundary layer dynamics. The third term on the right-hand side of
(6.32) is the Longuet-Higgins streaming due to wave propagation only, independent of whether
the eddy viscosity is assumed time dependent.

In order to complete the second-order analysis, we need to characterize the second harmonic.
The tedious second-harmonic analysis for the propagating wave case was previously carried out
by Trowbridge and Madsen [67, 69]. Here we summarize their results. Substituting (6.18) into
(6.5) and assuming a near-bed velocity consisting of two Fourier harmonics, (6.1), we obtain
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the second-order equation

∂ũe

∂t
+

[
ũo

∂ũo

∂x
− ũo

∂ũo

∂x

]
+

[
w̃o

∂ũo

∂x
− w̃o

∂ũo

∂x

]

=
∂Ũ∞2

∂t
+ Ũ∞1

∂Ũ∞1

∂x
+

∂

∂z

[
ν̃o

∂ũo

∂z
− ν̃o

∂ũo

∂z

]
+

∂

∂z

[
ν

∂ũe

∂z

]
. (6.35)

In terms of harmonics, (6.35) yields

∂

∂z

[
ν

∂u

∂z
+

1
2
a(1)ν

∂u(1)

∂z

]
− i2ωu(2) = −2iωU (2)

∞

−1
2
ik

[
U (1)
∞ − u(1)

]2
+ ikU (1)

∞
[
U (1)
∞ − u(1)

]

+
1
2
ikU (1)

∞
∂u(1)

∂z
(z − z0) +

1
2

k

ω

[
τ (1)

ρ
− τ

(1)
b

ρ

]
∂u(1)

∂z
. (6.36)

(6.36) coincides with Trowbridge and Madsen’s result (Equation 21b in Reference [69]). As
derived by Trowbridge and Madsen [67, 69], the corresponding equation for a(1) in terms of the
bed shear stress is

2a(1) =
τ b

τ
(1)∗
b

+
τ∗b

τ
(1)∗
b

+
τ

(2)
b

τ
(1)
b

− 3
5

τ
(2)∗
b

τ
(1)∗
b

τ
(1)
b

τ
(1)∗
b

, (6.37)

which is an implicit equation for a(1) that can be evaluated numerically. As shown by Trowbridge
and Madsen, the second-harmonic bed shear stress is given by

τ
(2)
b

τ
(1)
b

=
k

ω
U (1)
∞

F (1)(ζ0)
F (2)(ζ0)


 U

(2)
∞

(k/ω)
[
U

(1)
∞

]2 − 1− a(1)/2

(k/ω)U (1)
∞




+
k

ω
U (1)
∞

[
1 +

a(1)

(k/ω)U (1)
∞

]

+
k

ω
U (1)
∞

[
I1 − I3

F (1)(ζ0)F (2)(ζ0)
+

I2

F (2)(ζ0)

]
, (6.38)

where

I1 ≡
∫ ∞

0
i
[
F (1)

]2
F (2)dζ (6.39)

I2 ≡
∫ ∞

0
iζ

dF (1)

dζ
F (2)dζ (6.40)

I3 ≡
∫ ∞

0

dF (1)

dζ

[
ν

κu∗wc

dF (1)

dζ
+

1
2

]
F (2)dζ. (6.41)

These expressions for the second-harmonic solution are almost identical to Trowbridge and
Madsen’s, and they can be evaluated using a computer. The only differences are: (1) that the
expressions must here be evaluated with our assumed eddy viscosity vertical structure, given
by (3.22), and (2) that the zeroth harmonic, given by (6.31), includes a term that accounts for
an imposed total flux or external current.
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6.5 Relative importance of the two streaming mechanisms

As an application of the propagating wave solution presented above, we study the relative
importance of the streaming mechanisms due to wave propagation (Longuet-Higgins’s, LH
streaming) and to the time-dependent eddy viscosity (Trowbridge and Madsen’s, TM stream-
ing). Specifically, we consider the experimental conditions of Test 1 by Ribberink and Al Salem
[61] discussed in Section 4.3.2, corresponding to a purely skewed wave. Here we predict how
the boundary layer streaming would change if the experiment were run in a wave flume (with
propagating waves) instead of in an OWT (with non-propagating waves). To simplify the cal-
culations, the effect of the wave-induced mean current on the eddy viscosity is ignored here.
Instead, here we assume the eddy viscosity to be constant for z ≥ δI , as was also done in Section
3.6. Further, the effect of a zero total flux constraint in the boundary layer flow is ignored. Thus
G = 0 and the second term on the right-hand side of (6.32), which accounts for an externally
prescribed flux, vanishes. With these simplifications, the propagating wave solution reduces
to that of Trowbridge and Madsen, which allows us to use their simpler closed-form solutions
(presented in Reference [69]) to evaluate the second harmonic.

Ribberink and Al Salem’s Test 1 intends to reproduce a Stokes second-order wave with
U

(1)
∞ = 0.8082 m/s, U

(2)
∞ = 0.2586 m/s, and T = 6.5 s. For a second-order Stokes wave,

∣∣∣U (2)
∞

∣∣∣ =
3k

4ω

1
sinh2(kh)

∣∣∣U (1)
∞

∣∣∣
2
, (6.42)

which, together with the dispersion relationship, allows us to determine the wave number k =
0.1847 m−1, corresponding to a wave of height 1.01 m in a depth of 3.09 m. The sediment
diameter is D50 = 0.21 mm, and the corresponding mobile-bed roughness is estimated to be
kn ≈ 1.8 mm, which was the value obtained when applying the non-propagating wave model in
Section 4.3.2. The resulting boundary layer streaming is represented in Figure 6-1. The total
streaming (solid line) is the sum of three components. The first component is the streaming due
to the time-varying eddy viscosity only (dashed line), which corresponds to the result discussed
in Section 4.3.2, with a maximum negative streaming of about −5 cm/s (about −3 cm/s in
Section 4.3.2). Since here we are ignoring the zero total flux condition and using a slightly
different eddy viscosity vertical structure, the result shown here only resembles the previous
result in the region closer to the bottom. The second and third components of the streaming
are due to wave propagation alone (dash-dotted line) and to the interaction between wave
propagation and time-varying eddy viscosity (dotted line). As seen in the figure, the second
and third terms, arising from wave propagation, balance the first term, and the total streaming
is very small. Consequently, the induced total cross-sectional flux is very small, and we expect
to predict a very similar streaming profile if the zero total flux condition were accounted for.
In conclusion, the effect of wave propagation on the boundary layer streaming is significant,
since the streaming observed in the OWT for this case is expected to be practically absent if
the same experiment were carried out in a wave flume.

Next, we consider the relative effect of wave propagation and of eddy viscosity time de-
pendence on the streaming. By examining (6.32), we deduce that the ratio between the mag-
nitudes of the wave-propagation-induced streaming (LH streaming) and the eddy-viscosity-
induced streaming (TM streaming) is

r =
k

∣∣∣U (1)
∞

∣∣∣
2

2ω
∣∣∣U (2)
∞

∣∣∣
. (6.43)
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Figure 6-1: Predicted boundary layer streaming over the wave boundary layer for the conditions
in Ribberink and Al Salem’s Test 1, assuming a propagating second-order Stokes wave and
ignoring total flux constraints: total streaming (solid line) and streaming components arising
from the temporal dependence of the eddy viscosity (dashed line), from the spatial dependence
due to wave propagation (dash-dotted line), and from the interaction between the spatial and
temporal dependencies (dotted line).
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Clearly, for a very long wave, the effect of wave propagation will be negligible. If the near-bed
wave velocity is kept constant, the streaming increases linearly with the wavelength. This is
illustrated by Figure 6-2, which shows the dependence of the streaming far from the bottom on
the value of r, when the near-bed velocity is that of Ribberink and Al Salem’s Test 1. Changes
in the value of r correspond to changes in the assumed value of k. The case r = 0 (k = 0)
corresponds to the non-propagating wave (the OWT experiment), represented by the dashed
line in Figure 6-1. The black circle in Figure 6-1 corresponds to the total streaming (solid line)
in Figure 6-1 (k = 0.1847 m−1).
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Figure 6-2: Predicted boundary layer streaming at the outer edge of the wave boundary layer for
the conditions in Ribberink and Al Salem’s Test 1, assuming a propagating wave with different
values of the ratio r. r = 0 corresponds to a non-propagating wave of infinite wavelength, and
larger values of r correspond to shorter wavelengths. The dashed line correspond to wavelengths
that are longer than allowed by linear wave theory (i.e., longer than the deep water wavelength).
The black circle corresponds to the propagating second-order Stokes wave in Figure 6-1.

6.6 Effect of wave propagation on net sediment transport rates

Here we investigate how bedload transport rates differ between a non-propagating and a prop-
agating wave. Same as in the previous section, we use Trowbridge and Madsen’s solution [69]
to obtain the second-order bed shear stress under a propagating wave. Then, we use Madsen’s
bedload formula, (2.35), to compute the sediment transport rate. As concluded in Chapter 5,
the appropriate roughness to compute bedload under sheet flow conditions is the total, mobile-
bed roughness, (2.36), which we use here. Once again it is noted that, unlike the analytical
OWT model of Chapter 3, Trowbridge and Madsen’s solution uses a simpler, bilinear eddy
viscosity vertical structure, and it does not account for prescribed flux conditions (such as a
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zero total mean flux).

Figure 6-3 shows a comparison between predictions using Trowbridge and Madsen’s solution
and the experimental data sets of purely skewed waves in OWTs that were previously discussed
in Sections 2.3.4 and 5.2.1. Trowbridge and Madsen’s solution is applied in the limit of a very
long wave, which corresponds to the non-propagating OWT case. Correspondingly, Trowbridge
and Madsen’s predictions in this limit are similar to those of the OWT boundary layer model
of Chapter 3, and Figures 6-3 and 5-14 are similar. Use of Trowbridge and Madsen’s solution
in Figure 6-3 overpredicts the data by a factor of 1.3, while the OWT model in Figure 5-14
yielded an overprediction of 1.2.
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Figure 6-3: Comparison between measured and predicted average sediment transport rates
under skewed, symmetric waves for bedload-dominated cases (u∗m/ws < 4). Predictions are
obtained using Trowbridge and Madsen’s analytic boundary layer model with mobile-bed rough-
ness. A very long wave is assumed, so that the wave is non-propagating. The solid line corre-
sponds to perfect agreement between predictions and measurements, while the dashed line is
the least-square fit to the data (excluding the two data points with the largest transport rates)
and corresponds to an overprediction by a factor of 1.3.

Figure 6-4 demonstrates the effect of wave propagation on bedload transport rates. The
figure shows a comparison between the predictions of Trowbridge and Madsen’s solution for
propagating waves and the experimental data sets of purely skewed waves in OWTs (non-
propagating). The near-bed velocities used in Trowbridge and Madsen’s model are those from
the OWT experiments, but they are assumed to correspond to propagating waves on a water
depth of 3 m. The corresponding wavelengths are determined using the linear dispersion rela-
tionship for gravity waves. As shown in the figure, the transport rates predicted for propagating
waves are typically 3 times larger than those measured in OWTs, demonstrating the significant
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effect of wave propagation on sediment transport.
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Figure 6-4: Comparison between measured and predicted average sediment transport rates
under skewed, symmetric waves for bedload-dominated cases (u∗m/ws < 4). Predictions are
obtained using Trowbridge and Madsen’s analytic boundary layer model with mobile-bed rough-
ness. A water depth of 3 m is assumed, and the wave length is obtained using the dispersion
relationship for linear gravity waves. The solid line corresponds to perfect agreement between
predictions and measurements, while the dashed line is the least-square fit to the data (exclud-
ing the two data points with the largest transport rates) and corresponds to an overprediction
by a factor of 3.0.

Figures 6-5 and 6-6 show comparisons between predictions using Trowbridge and Madsen’s
solution and the experimental data sets of purely asymmetric waves in OWTs that were pre-
viously discussed in Sections 2.3.5 and 5.2.2. Figure 6-5 corresponds to the application of
Trowbridge and Madsen’s solution in the limit of a very long wave; the results are therefore
analogous to those obtained from application of the analytical OWT model of Chapter 3 in
Figure 5-18. Figure 6-6 corresponds to the application of Trowbridge and Madsen’s solution for
a propagating wave in a depth of 3 m and with the same near-bed velocity as the experiments.
The effect of wave propagation is not as clear as for the skewed waves: King’s experimental
cases are mostly unaffected by wave propagation, while some of Watanabe and Sato’s data are
drastically affected. Globally, the comparison suggests that the measured transport rates for
an asymmetric wave in an OWT may in some cases be very different than those occurring in
the sea.
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Figure 6-5: Comparison between measured and predicted average sediment transport rates
under asymmetric, non-skewed waves for bedload-dominated cases (u∗m/ws < 4). Predictions
are obtained using Trowbridge and Madsen’s analytic boundary layer model with mobile-bed
roughness. A very long wave is assumed, so that the wave is non-propagating. The solid line
corresponds to perfect agreement between predictions and measurements, while the dashed line
is the least-square fit to the data (underprediction by a factor of 1.3), and the dotted line is the
least-square fit to King’s data only (underprediction by a factor of 1.4).
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Figure 6-6: Comparison between measured and predicted average sediment transport rates
under asymmetric, non-skewed waves for bedload-dominated cases (u∗m/ws < 4). Predictions
are obtained using Trowbridge and Madsen’s analytic boundary layer model with mobile-bed
roughness. A water depth of 3 m is assumed, and the wave length is obtained using the
dispersion relationship for linear gravity waves. The solid line corresponds to perfect agreement
between predictions and measurements, while the dashed line is the least-square fit to the data
(overprediction by a factor of 4.8), and the dotted line is the least-square fit to King’s data only
(underprediction by a factor of 1.3). The large overprediction factor obtained for the whole
data set is due to large overpredictions of Watanabe and Sato’s cases 19, 20, and 21 (not shown
in the figure), by factors of 58, 9.8, and 3.0, respectively.
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6.7 Summary

Following Trowbridge and Madsen’s analysis, in this chapter we outlined the computation of
bed shear stresses and boundary layer streaming under a propagating wave. We discussed the
effect that wave propagation has on streaming and bedload predictions. While the first-order
solution for a propagating or non-propagating wave is identical, the effect of wave propagation
on the second-order solution has a significant impact on the predicted sediment transport rates,
which are very sensitive to small changes on the bed shear stress. Specifically, wave propagation
increases net sediment transport rates for the skewed wave cases considered here by a factor of
3. Wave propagation has an uneven effect on the sediment transport rates of asymmetric waves:
the transport rates predicted for King’s data set are rather unaffected, while those predicted
for Watanabe and Sato’s data increase by a factor of about 5− 10.

In conclusion, significant differences in boundary layer streaming and net transport rates
are expected from the second-order hydrodynamic differences between non-propagating waves
in an OWT and propagating waves in wave flumes and the sea. These significant differences
must be accounted for when using OWTs to investigate nearshore sea wave phenomena.
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Chapter 7

Summary and conclusion

In Chapter 2 we discussed the physics of nearshore wave boundary layers and developed a
simple conceptual model for the bed shear stress. The model uses a time-dependent friction
factor that accounts for the variability in wave shape. The bed shear stresses predicted by
this model are in reasonable agreement with those predicted by a numerical model with a k-ε
turbulence closure, although the model slightly overpredicts the bed shear stresses under skewed
waves. The model was combined with a bedload transport formula to predict bedload under
skewed waves, asymmetric waves, and half cycles of sinusoidal waves over a sloping bottom.
Model’s predictions were compared to experimental sheet flow transport data from OWTs.
Good agreement was obtained when the bed shear stresses were computed using an effective
roughness equal to the sediment diameter. In contrast, using a bed shear stress based on the
total, mobile-bed roughness resulted in a significant overprediction of the skewed wave transport
data. For most of the asymmetric wave data, the mobile-bed roughness is of the same order
as the grain diameter, and the agreement between predictions and measurements is good for
either choice of the roughness.

Application of the bed shear stress model is here limited to bedload. To determine whether
bedload is the dominant transport mechanism, we use the ratio between the maximum shear
velocity and the sediment fall velocity. When this ratio is smaller than a certain threshold of
order one, suspension effects can be neglected, and the sediment transport rate can be predicted
using a bedload formula. By comparison with sheet flow experimental data, this threshold is
estimated to be 2.7 or 4, for the bed shear stress respectively based on the sediment diameter or
on the total, mobile-bed roughness. When this threshold is exceeded and sediment suspension
becomes relevant, phase lags between concentration of suspended sediment and near-bed orbital
velocity become important, and the bedload assumption of an immediate sediment response to
changes in the flow does no longer hold.

We extended the conceptual wave model to the case of combined waves and currents and
compared its bedload predictions with OWT sheet flow transport data for sinusoidal waves
plus a current. In contrast with the results for pure skewed waves, for which good bedload
predictions are obtained with a roughness based on the sediment diameter, computations based
on the sediment diameter significantly underpredict the wave-current sediment transport data.
When the bed shear stresses are based on the total, mobile-bed roughness, the wave-current
model predictions agree with the measurements. This inconsistent choice of roughness to predict
bedload in cases with and without currents is attributed to the high sensitive of the net transport
rates to small errors in the conceptual model’s bed shear stress predictions. Such small errors
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are made apparent by comparing the conceptual and the numerical k-ε models’ bed shear stress
predictions for skewed waves.

The failure of the simple conceptual model to predict bedload in cases with and without
currents using a consistent choice of bed roughness prompted us to develop a more detailed char-
acterization of the nearshore wave boundary layer hydrodynamics. In Chapter 3 we presented
an analytical characterization of the boundary layer flow in an OWT under an asymmetric and
skewed wave (characterized by its two first Fourier harmonics) plus a weak current. Following
the work of Trowbridge and Madsen [68, 69], we account for the time dependence of the eddy
viscosity. While Trowbridge and Madsen considered the general case of a propagating wave, we
restricted our analysis to a non-propagating wave in an OWT. Unlike the pure wave analysis
of Trowbridge and Madsen, we accounted for an imposed collinear weak current. Also, while
Trowbridge and Madsen assumed a bilinear structure of the eddy viscosity, we assume a more
sophisticated vertical structure that accounts for the finite thickness of the wave boundary layer
and for the effects of the (imposed or wave-induced) current turbulence. Our analysis yielded
closed-form analytical solutions for the flow field and the bed shear stresses in an OWT. Even in
the absence of a current, we identified the existence of a mean flow (boundary layer streaming)
that arises from the interaction between the velocity and the time-varying eddy viscosity. An
expression for the wave boundary layer thickness as a function of the relative bottom roughness
was also presented.

In Chapter 4 we completed the hydrodynamical characterization of the OWT by accounting
for the effect of the cross-sectional geometry and the prescribed cross-sectional flux. Corre-
sponding to most OWT facilities, we considered an OWT cross section that is tall and narrow,
for which the centerline flow is governed by the sidewall boundary layers. Accounting for the
sidewall boundary layer effect is thus crucial to correctly predict the hydrodynamics near the
bottom. We compare the hydrodynamic predictions of the model with measurements for sinu-
soidal, skewed, and asymmetric waves. For the two latter cases, the model predicts boundary
layer streaming. For skewed waves, the interaction between velocity and eddy viscosity re-
sults in offshore streaming close to the boundary, which is balanced by an onshore mean flux
further from the boundary. For the asymmetric wave conditions studied here, we predict the
opposite behavior, with onshore streaming near the boundary and offshore streaming far from
the boundary. Our predictions for skewed waves agree with experimental data by Ribberink
and Al Salem [61]. This is, to the author’s knowledge, the first successful and fully-predictive
explanation of Ribberink and Al Salem’s streaming profiles. On the contrary, our predictions
for asymmetric waves disagree with experimental data by Van der A et al. [70], who observed
offshore streaming near the boundary, analogously to Ribberink and Al Salem’s skewed wave
experiments. It is noted that our analytical model uses a two-Fourier harmonic input veloc-
ity, which almost exactly reproduces the experimental conditions of Ribberink and Al Salem
(who used second-order Stokes waves) but which only renders an approximation of Van der
A et al.’s experiments (whose asymmetric near-bed velocities are not exactly reproduced by
their two first Fourier harmonics). It is also noted that, unlike in Ribberink and Al Salem’s
experiments, Van der A et al.’s OWT cross section is not tall and narrow, but has a shape
close to a square. We also apply the hydrodynamic model to cases with waves combined with
a current by Dohmen-Janssen [9]. The model yields a reasonable prediction of the observed
current profiles, although a simpler model based on a time-invariant eddy viscosity (a modified
Grant-Madsen model, see Appendix B) yields comparable (or even better) predictions.

In Chapter 5 the analytical solutions for bed shear stresses are applied to compute bedload.
To simplify the evaluation of the analytical expressions, which involve Kelvin functions and
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complex numbers, we presented an approximate, alternative formulation of the bed shear stress
solutions. In this approximate formulation, the first, second, and third harmonics of the bed
shear stress are evaluated separately using fitted expressions for friction factors and phase shifts,
and then added up to obtain the total bed shear stress. We also present simplified expressions
to compute the current shear stress in the case where an external current is prescribed through
a reference current velocity. The model successfully predicts bedload transport rates measured
in several experimental studies for skewed waves, asymmetric waves, and sinusoidal waves plus
a current when the mobile-bed roughness is used. Some disagreement is found when comparing
the model’s predictions based on the mobile-bed roughness with results of half-cycle sinusoidal
waves on a slope. As discussed in the text, the analytical model is only strictly applicable
to periodic wave conditions, while the bed shear stresses under the first half wave period of
a motion started from rest are slightly smaller than those corresponding to periodic waves.
Since the sediment transport rates are very sensitive to small errors in the bed shear stress,
applying our model to predict transport rates from impulsively started experiments may result
in up to a factor of 3 overprediction. Both for pure asymmetric and skewed waves and for
waves combined with a current, good agreement between the analytical model’s predictions
and the measurements is obtained when the bed shear stress is based on the total, mobile-
bed roughness. In contrast, a roughness equal to the sediment diameter systematically yields
underpredictions. Unlike the simple conceptual model of Chapter 2, the analytical model is
compatible with a consistent choice of roughness. We thus conclude that the appropriate
sheet flow roughness that parameterizes the effective bed shear stress is the total, mobile-
bed roughness. The effective sheet flow roughness thus coincides with the total hydraulic
roughness, and the effective sheet flow bed shear stress is the total bed shear stress. The
mobile-bed roughness can be evaluated using (2.36), the total hydraulic sheet-flow roughness
formula proposed by Herrmann and Madsen [28].

Finally, Chapter 6 outlined the analytical solution for the boundary layer hydrodynamics
under propagating waves, similar to that obtained by Trowbridge and Madsen [68, 69]. Using
this solution, we compared the hydrodynamics and sediment transport rates under propagating
waves (in the sea or in a wave flume) and non-propagating waves (in an OWT). We checked
that, in the limit of a very long wave, the propagating and non-propagating analytical mod-
els’ predictions coincide. In contrast, for realistic values of the propagating wave length, the
hydrodynamic and sediment transport predictions of the two models are noticeably different.
For example, if Ribberink and Al Salem’s experiment had been conducted in a wave flume, our
models predict that the observed streaming would have been significantly smaller, since for this
case the streaming components due to wave propagation and to the time-varying eddy viscos-
ity approximately cancel out. Our model also predicts a significant difference in net sediment
transport rates between a propagating and a non-propagating wave. For the skewed wave cases
considered here, the sediment transport rates in a wave flume would typically be three times
larger than those measured in an OWT. For the asymmetric wave cases the magnitudes of the
differences are more heterogeneous; while for some cases the difference between propagating
and non-propagating waves is small, for others wave propagation would significantly increase
the net onshore transport rate. OWTs are useful experimental facilities to advance our un-
derstanding of boundary layers because they can achieve realistically high near-bed velocities
that are difficult to generate in a wave flume. However, the near-bed hydrodynamic differences
between propagating and non-propagating waves must be accounted for when interpreting the
results of OWT experiments.

This study of nearshore hydrodynamics and sediment transport is far from complete, and
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there is ample scope for future work. The model presented here is restricted to computation
of bedload under nearshore waves in the presence or absence of a collinear current. The model
should be extended to account for suspended transport and for waves and currents at an angle.
To study suspended transport, the hydrodynamic boundary layer solution should be used to
describe the near-bed velocity profiles that carry the sediment. While bedload responds almost
instantaneously to the flow, sediment suspension exhibits phase lag effects due to the delayed
response of sediment concentration to the flow [11]. The interplay of asymmetry and skewness
with these phase lag effects is not trivial, and it could yield net transport rate effects that are
qualitatively different from those described for bedload. In asymmetric waves, after the steep
wave front causes the largest sediment suspension, the velocity remains directed onshore for a
rather long time, and the suspended transport is directed onshore. In skewed waves, due to the
narrower wave crest, the velocity turns offshore shortly after the largest sediment suspension
occurs, and the suspended transport may potentially be directed offshore.

Combined waves and currents at an angle can be modeled by separately considering the
flow components in the direction of wave propagation and in the direction perpendicular to
it. The question that arises in this general wave-current situation is: what eddy viscosity
should be used in each direction? Use of an isotropic eddy viscosity, as in Grant and Madsen’s
model, is not necessarily a good solution; in fact, three-dimensional turbulent flows are usually
modeled using an (implicit or explicit) anisotropic eddy viscosity [20, 56]. A simple approach to
modeling anisotropic turbulence would be to consider two different values of the eddy viscosity
(one in the direction of wave propagation and another in the direction perpendicular to it). It
is known that the excellent predictions of Grant and Madsen’s model (based on an isotropic
eddy viscosity) for collinear waves and currents are not reproduced when the angle between
currents and waves is large [47]. The use of an anisotropic eddy viscosity could improve the
model’s ability to characterize this case.

Analogous to our application of the analytical model to characterize the sheet flow rough-
ness, the model could be used to study the bed roughness in the presence of bedforms. For
example, based on a Grant-Madsen analysis of experimental data, Wikramanayake and Madsen
[73] concluded that the total hydraulic roughness for ripples is equal to four times the ripple
height, which is larger than the effective roughness responsible for sediment transport on a
rippled bed (equal to the sediment diameter, according to Madsen and Grant [45]). Also using
Grant and Madsen’s model to analyze their experimental data, Mathisen and Madsen [48, 49]
further reached the non-trivial conclusion that a single roughness can be used to characterize
pure waves, pure currents, and combined wave-current flows. The previous results could be
reanalyzed using the model presented here.

The study presented here focuses on the characterization of local hydrodynamics and sed-
iment transport. The model can be incorporated into a general nearshore model, such as the
one developed by Tajima [64], to make it applicable to engineering problems. While only bed-
load due to periodic nearshore waves has been considered here, the model could be extended
to account for realistic random wave conditions by using a wave-by-wave approach, discussed
in previous work by the author [21].

While the analytical model has successfully been validated against existing laboratory data,
the number of studies of sheet flow bedload under asymmetric waves available to date is in-
sufficient for definitive verification of our model. There are also very few experimental data
for waves that are both asymmetric and skewed. Also, to the author’s knowledge, there are
no available sediment transport data of asymmetric and skewed waves plus a current in which
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the wave asymmetry or skewness and the current are both significant. New experimental data
covering a wide range of hydrodynamic and sediment conditions are needed to improve our
understanding of nearshore sediment transport processes.
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Appendix A

Madsen’s bedload transport formula
for a sloping bed

Here we summarize the derivation of Madsen’s bedload formula presented in Reference [42].
Consider a plane bed inclined at an angle β to horizontal in the direction of transport, where
β is taken positive if sloping upward in the direction of transport. At the point of incipient
sediment motion, the force balance between drag, gravity, and frictional resistance against
movement yields

1
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ρCD
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cosβ tanφs, (A.1)

where CD and φs are the drag coefficient and friction angle, respectively, for a stationary
superficial grain, which is assumed spherical in shape, of diameter d and density ρs. ucr,β is a
representative critical velocity for initiation of motion used in the evaluation of the drag force,
and ρ is the water density. Rearranging (A.1) yields
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For a sediment grain rolling or sliding along the inclined bed, the balance of fluid drag,
gravity, and frictional forces yields
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where uf is a characteristic fluid velocity, us is the velocity of the sediment grain, and φm is
the angle of moving friction. Rearranging (A.3) yields

(uf − us)
2

(s− 1)gd
=

4
3CD

tanφm

[
cosβ

(
1 +

tanβ

tanφm

)]
. (A.4)

Combining (A.2) and (A.4) results in the following expression for the sediment grain velocity

us = uf − ucr,β

√
tan φm + tanβ

tanφs + tanβ
(A.5)
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when the drag coefficients are assumed equal.

The immobile sediment grains on the bottom can support the critical shear stress for initi-
ation of motion,

τcr,β = τcr,0

[
cosβ

(
1 +

tanβ

tanφs

)]
, (A.6)

where τcr,0 is determined using the Shields diagram [e.g., 44]. Since sediment is moving, the
excess skin friction shear stress, |τb| − τcr,β > 0, must be carried by moving grains. The fluid
drag force on a moving grain, FD,m is given by the first term in (A.3). Denoting the number of
grains in motion per unit area by N , this argument leads to

|τb| − τcr,β = NFD,m

=
{

N
π

6
d3

}
(s− 1)ρg cosβ tanφm

(
1 +

tanβ

tanφm

)
. (A.7)

The term in {} represents the sediment volume in motion per unit area. With the velocity of
the sediment in motion given by (A.5), the bedload transport rate, qSB, is

qSB = N
(π

6
d3

)
us

=
(|τb| − τcr,β)

(s− 1)ρg cosβ (tan φm + tanβ)

(
uf − ucr,β

√
tanφm + tanβ

tanφs + tanβ

)
(A.8)

if |τb| > τcr,β and 0 otherwise. The reference fluid velocities, uf and ucr,β, used in calculating
fluid drag forces are based on kN = D50 and evaluated from the log-profile at z = 0.8D50 [41].
Introducing these reference velocities into (A.8) yields

qSB(t) =
8

(s− 1)ρg
max [0, |τb(t)| − τcr,β]

(√
|τb(t)|/ρ− αβ

√
τcr,β/ρ

)

cosβ (tanφm + tanβ)
τb(t)
|τb(t)| , (A.9)

where

αβ =

√
(tanφm + tanβ)
(tanφs + tanβ)

. (A.10)

As indicated in Chapter 2, φs ≈ 50◦ and φm ≈ 30◦ are the values of the angles of static and
moving friction recommended by Madsen [44].
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Appendix B

Grant and Madsen’s wave-current
model

In this appendix we present the pertinent formulas of Grant and Madsen’s wave-current model.
The results presented here are reproduced from Reference [43], with the boundary layer thick-
ness based on the expression initially proposed by Madsen and Salles [46] and later modified by
Madsen [40]. The latter modification is discussed below. The wave-current solution presented
in Reference [43] is based on the assumption of a bilinear eddy viscosity given by

νt =
{

κu∗mz z ≤ δwc

κu∗cz z > δwc,
(B.1)

where u∗m is the maximum combined wave-current shear velocity, and u∗c is the current shear
velocity. This yields the following current velocity profile:

uc =





u2∗c
κu∗m

ln
30z
30z0

z ≤ δwc

u∗c
κ

ln
30z

30z0a
z > δwc,

(B.2)

where
30 z0 = max {kn, 3.3ν/u∗m} , (B.3)

and 30z0a = kna, the apparent roughness, is determined by matching the two solutions at
z = δwc, resulting in

kna

30z0
=

(
δcw

z0

)1−u∗c/u∗m

. (B.4)

As discussed in Chapter 3, an eddy viscosity assumption more realistic than the discontinuous
profile (B.1) is

νt =





κu∗mz z ≤ δ/6
κu∗mδ/6 δ/6 < z ≤ (u∗m/u∗c)δ/6
κu∗cz z > (u∗m/u∗c)δ/6.

(B.5)

δ is the wave-current boundary layer thickness proposed by Madsen and Salles [46],

δ =
κu∗m

ω
exp

{
2.96X−0.071 − 1.45

}
, (B.6)

where X = (Cµubm)/(knω),
Cµ =

√
1 + 2 |cosφwc|µ + µ2, (B.7)
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φwc is the angle between the current and the direction of wave propagation, and

µ =
τc

τwm
. (B.8)

The piecewise current velocity profile arising from (B.5) has three portions. The first and third
portions correspond to the two portions of the simpler velocity profile in (B.2). This first and
third portions, if extended, would intersect at a level z = zm. Therefore, for (B.2) to become a
good approximation of the more accurate profile, a good choice of the transition level between
the two portions, z = δwc, should be z = zm. To accomplish this, the value of the wave-current
boundary layer thickness is modified to

δwc = δ

(
Cµ

µ

)P 1
16.3

, (B.9)

with

P =

√
Cµ

1
(√

Cµ −√µ
) . (B.10)

The maximum wave shear stress is obtained from

τwm = ρu2
∗wm =

1
2
ρfwcu

2
bm, (B.11)

where fwc, the combined wave-current friction factor, is approximated by

fwc =
{

Cµ exp
{
7.0X−0.078 − 8.8

}
0.2 < X < 102

Cµ exp
{
5.6X−0.109 − 7.3

}
102 < X < 104.

(B.12)

The maximum combined wave-current shear stress is

τm = ρu2
∗m = ρ

(
u2
∗wm + u2

∗c
)

= Cµτwm. (B.13)
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