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Ordering of sedimenting paramagnetic colloids in a monolayer
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Sedimentation enables self-assembly of colloidal particles into crystalline structures, as needed for catalysis
or photonics applications. Here we combine experiments, theory, and simulations to investigate the equilibrium
structure of a colloidal monolayer with tunable interparticle repulsion via an applied external magnetic field. Exper-
imental observations of the equilibrium structure are in excellent agreement with density functional theory. Within
a (zero-temperature) local density approximation, we derive a simple analytical expression that quantitatively
captures the inhomogeneous ordering ranging from solid to liquidlike states. Monte Carlo simulations corroborate
these findings and explore an even wider range of sedimentation conditions, thus providing a global view of the
sedimentation-mediated ordering in colloidal monolayers with tunable long-ranged interparticle repulsions. Our
findings shed further light on the classical sedimentation problem in colloidal science and related areas.
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The self-assembly of colloidal particles into crystalline
structures has attracted significant attention over the past
decades [1–6] (for a review, see [7]). Besides opening the way
to many technological applications in various fields including
photonics, chemical sensors, and catalysis [8–10], the study of
colloidal self-assembly has also provided new insights into
the physics of crystallization thanks to the experimentally
accessible length, time, and energy scales of colloidal systems
[2,11–14]. Sedimentation is commonly used to manufacture
colloidal crystals, as it provides a simple way to locally
increase the volume fraction of a colloidal suspension to induce
crystallization.

Since the seminal work by Perrin [15], sedimentation has
stimulated a wealth of statistical mechanics studies of complex
fluids under gravity [16–26] (for a review, see [27]). Measuring
the equilibrium density profile of colloidal suspensions pro-
vides a method to characterize the thermodynamical properties
of the system [17,18]. The classical density functional theory
(DFT) constitutes a well-known tool to describe the equilib-
rium density profiles for different interparticle interactions,
including hard spheres or screened Coulomb [17,19,20], elec-
trostatic [18,21] or magnetic [22] pair potentials, and mixtures
of colloids and polymers [23,24].

Recently, crystallization in a tilted monolayer was studied
for a system of hard spheres, allowing a full description of
the phase diagram of two-dimensional hard-sphere colloids
[25]. On the other hand, sedimentation experiments of a
ferrofluid have been conducted recently in a three-dimensional
system and successfully fitted by a perturbed virial expansion
approach [26]. In this Rapid Communication, we propose
an original experiment where the sedimentation of a two-
dimensional array of paramagnetic colloids, whose interaction
potential can be controlled by an external magnetic field, is
visualized through optical microscopy. In conjunction, we de-
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rive a DFT model and develop numerical simulations to further
outline the physics of sedimented paramagnetic colloids in two
dimensions.

A suspension of superparamagnetic particles (Dynabeads
M-450, diameter 2R = 4.4 μm; Life Technologies) is allowed
to sediment to the bottom of a rectangular quartz cuvette
(Hellma Analytics), forming a 1 cm × 1 cm bidimensional
array of average initial density ρi. A coil of diameter 13 cm
and height 2.5 cm with 95 loops is centered around the
cuvette to generate a magnetic field Bz perpendicular to
the array, inducing a repulsive magnetic potential between
neighboring colloids. The coil and cuvette rest on a plate
that can be tilted to a chosen angle α with respect to the
horizontal, subjecting the particles to an in-plane gravity
component, g sin α, which drives particle sedimentation along
the y direction [see Fig. 1(a) for a sketch of the setup]. The
whole setup is built on the stage of an inverted microscope
equipped with a CCD camera. It is thus possible to translate
the setup along the y direction in order to access the full
density profile of the colloidal array. Due to the small angle
existing between the sample plane and the imaging plane, the
imaging plane needs to be refocused during stage translation,
whereas focus differences within one image are negligible.
A typical experimental snapshot reconstructed from images
recorded along the y direction is presented in Fig. 1(b). A dense
ordered sediment is observed at the lowermost edge of the plane
bottom around y = 0. In this region, the sediment exhibits
a polycrystalline microstructure, characterized by localized
crystallites with a triangular lattice [Fig. 1(c)] [13]. Upon
increasing y, the ordering decreases [Fig. 1(b)].

To quantify the ordering of the colloidal suspension, we
investigate the spatial variation of the density profile, ρ(y).
The latter is defined as the laterally integrated density profile
that reads

ρ(y) = 1

Lx

∫ Lx

0
n(x, y)dx, (1)
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FIG. 1. Sedimentation of a two-dimensional monolayer of para-
magnetic colloids. (a) Sketch of the experimental setup allowing
a layer of colloids confined in the (x, y ) plane to be tilted by an
angle α to drive sedimentation along the y direction. (b) Experi-
mental sedimentation profile reconstructed from snapshots recorded
at different positions y for a tilt angle α = 1.6◦ at B = 0.9 mT. A
threshold has been applied to the images for better visibility. The
scale bar corresponds to 50 μm. (c) Details of a typical experimental
image. Particles arranged on a triangular lattice are surrounded by six
neighbors and are highlighted in yellow.

where n(x, y) stands for the local particle density on the (x, y)
plane and Lx is the bottom edge [see also Fig. 1(b)]. We
analytically describe ρ(y) by a DFT approach that we briefly
describe in what follows. The pair potential of two paral-
lel identical magnetic dipoles of magnitude χB is U

(dip)
ij =

μ0

4π

χ2B2

r3
ij

, where μ0 is the permeability, χ is the magnetic

susceptibility, and rij is the distance between the two dipolar
particles i and j . At prescribed coordinate y, it is assumed
that the local density ρ(y) results from a triangular lattice with
lattice constant a(y) yielding ρ(y) = 2/[

√
3a(y)2]. Thereby,

the dipole potential energy associated with particle i located
at yi obeys U

(dip)
i = 1

2

∑
j U

(dip)
ij = 2M

5
μ0

4π
χ2B2ρ(yi )3/2 where

M = 2−7/233/45M0 ≈ 11.116 is a geometrical constant with
M0 ≈ 11.034 denoting the Madelung constant obtained by
lattice sum [28,29]. The gravity contribution is merely given
by U

(gravity)
i = mgyi sin α, so that the total potential energy

associated with particle i at yi reads Ui = U
(gravity)
i + U

(dip)
i .

Within this framework, we are able to write the free energy of
the system per unit width Lx (see also the setup in Fig. 1) as
[17]

βF =
∫ ∞

0

(
ρ(y){[ln(�2ρ(y))] − 1} + ρ(y)

y

�s

+ 2M

5
��3

s ρ(y)5/2

)
dy, (2)

where � is the (irrelevant) thermal wavelength, and m is the
effective mass of a particle (corrected for buoyancy). The first
term in Eq. (2) represents the ideal gas part. The second term is
the gravity contribution with �s = (βmg sin α)−1 denoting the
sedimentation length, where β = 1/kBT (kB is the Boltzmann
constant and T the temperature). The last term corresponds
to the dipole-dipole interaction with � ≡ μ0

4π

χ2B2

kBT �3
s

being the
dimensionless magnetic coupling. At equilibrium, the free

energy is minimum, subjected to the condition of conservation
of the total number of particles, i.e.,

∫ ∞
0 ρ(y)dy = ρx , where

ρx is the projected density, obtained as the number of particles
divided by Lx . Denoting ρ0 = ρ(y = 0), the resulting Euler-
Lagrange equation related to Eq. (2) can be written as

ln
ρ(y)

ρ0
+ M�

[
ρ(y)3/2 − ρ

3/2
0

]
�3

s = − y

�s

(3)

with ρ0 = ρ0(ρx ). At this stage, static quantities are fully
determined by assigning values to � and ρx and employing
�s as unity of length. In the high-temperature limit �ρ3

x�
3
s �

1, the logarithmic term in Eq. (3) dominates and the well-
known Perrin’s result ρ(y) = ρx

�s
exp(−y/�s ) is recovered [15].

Interestingly, in the low-temperature limit �ρ3
x�

3
s � 1, the

logarithmic term in Eq. (3) becomes negligible. In that regime,
the following relevant result is obtained:

(
ρ(y)

ρ0

)3/2

= 1 − y

ymax
, (4)

where ρ0 = (5/3)2/5γ 2/5ρ2
x and ymax = (5/3)3/5γ −2/5ρ−1

x

with γ = (�ρ4
x�

4
sM )−1 = 4πmg sin α

Mμ0χ2B2ρ4
x

reflecting the ratio be-
tween the gravity potential and the magnetic interaction. Equa-
tion (4) will be referred to as the zero-temperature local density
approximation (LDA) result (or model). In what follows, this
remarkably simple analytical expression (4) will be tested
against experiments and simulations.

To gain further insight into the physical mechanisms of
sedimenting paramagnetic colloids in two dimensions, Monte
Carlo (MC) simulations based on the (exact) Hamiltonian,
βUMC = ∑

i
yi

�s
+ 1

2

∑
i 	=j

��3
s

r3
ij

, are performed in the canonical

ensemble mimicking the experimental situation. The number
of particles N is fixed at N = 1000 [30]. The simulation cell
consists of a Lx × Ly rectangular box with periodicity in the x

direction, consistent with the setup in Fig. 1. The long-range
dipole-dipole interactions are computed using a Lekner-like
sum technique adapted for systems with periodicity in one di-
rection [31]. Typically 105–106 MC steps are devoted for
equilibration and statistics are gathered over an additional 106

MC steps.
The experimental density profiles normalized according to

the zero-temperature LDA model [see Eq. (4)] are displayed in
Figs. 2(a) and 2(b) [32]. We adopt as our baseline conditions
α = 2◦ and B = 0.9 mT, corresponding to γ ≈ 3.0 × 10−4

[33]. Figure 2 shows the effect (a) of varying the strength of the
magnetic field and (b) of changing the slope. In both cases, an
excellent agreement between theory and experiment is found.
Figures 2(d)–2(f) show experimental snapshots for α = 2◦ and
different strengths of the magnetic field. A similar structural
evolution is observed upon increasing the slope at constant
magnetic field. In the same spirit as the experiments, we also
choose a reference system in our simulations (� = 100, g∗ =
1) defining the reference sedimentation length �(ref)

s [34]. The
corresponding density profile is displayed in Fig. 3(b). A
smoothing of the simulation density profiles [35] covering
a wide range of � and g∗ values (see Fig. 3), leads to a
virtually quantitative agreement with theory [see Fig. 2(c)].
Hence, the experimental profiles exhibit an identical behavior
to that of the smoothed density profiles stemming from the MC
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FIG. 2. Density profiles normalized according to the theoretical model as a function of the normalized upslope distance [see Eq. (4) and
definitions of ymax and ρ0 in the text]. The black line in each plot is the theoretical prediction given by Eq. (4). Experimental profiles (a) for
different values of the magnetic field B at fixed inclination angle α = 2◦ and (b) for different values of α at constant magnetic field B = 0.9 mT.
(c) Simulation profiles for different values of g∗ and �. Experimental snapshots of the sedimented monolayer recorded at y = 490−980 μm
are shown for α = 2◦ and B = 0.5 mT (d), B = 0.9 mT (e), and B = 1.9 mT (f). The scale bars correspond to 50 μm.

simulations. The absence of oscillations in the experiments is
due to polycrystallinity, detectable in Fig. 1(c), which averages
out the density oscillations of single domains.

The vivid oscillatory behavior revealed in the bare simula-
tion density profiles is a signature of the strong layering occur-
ring around the bottom edge (see Fig. 3) [17,19]. Sufficiently

FIG. 3. Monte Carlo simulation density profiles with magnetic coupling � = 100 for different values of the gravity parameter (a) g∗ = 0.5,
(b) g∗ = 1, and (c) g∗ = 2. Two additional profiles at prescribed g∗ = 1 with (d) � = 25 and (e) � = 400 are also displayed. The thick (black)
line is the LDA theoretical prediction [see Eq. (4)]. The circles represent the smoothed density profiles (see also text). The insets show a
magnified view. Accompanying microstructure snapshots are sketched on the top of panels (a)–(e). (f) Lattice constant a; see inset of (b) of for
illustration, as a function of � with g∗ = 1. The solid line is the best fit for a power law of the form �0.25. The insets are a magnified view of
the boxed regions in snapshots shown in (b) and (e). The unit length is �(ref)

s for the whole figure.
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far away from the bottom edge, nonsmoothed profiles quan-
titatively match with theory, signaling a disordered state (see
also snapshots provided in Fig. 3). Increasing gravity alone at
prescribed magnetic field (� = 100) enhances the ordering and
its range [see Figs. 3(a)–3(c). Concomitantly, the (apparent)
lattice constant a [distance between two successive peaks; see
inset in Fig. 3(a)] decreases with gravity. Upon increasing the
magnetic field at prescribed gravity (g∗ = 1) [see Figs. 3(b),
3(d) and 3(e)], the range of the layering becomes broader.
Thereby, the lattice constant increases with � (see Fig. 3). More
specifically, a remarkable power law like a/�s ∼ �1/4 emerges
[ee Fig. 3(c)]. The latter can be rationalized with the simple idea
of a balance between gravity force (∼g = const) and repulsive
magnetic force (∼�/a4). Interestingly, at strong coupling
� = 400 [see Fig. 3(e)], the density profile is reminiscent of
a standing wave as a result of a nontrivial balance between
gravity (pushing the particles toward the bottom) and strong
repulsive magnetic interaction (expelling particles from the
bottom). In the situation of moderate layering with � = 25
[see Fig. 3(d)], it is worth mentioning that the simple zero-
temperature LDA prediction remains robust to describe the
smoothed density profile. Thereby, even at a finite temperature
well above zero, the zero-temperature LDA approach remains
suited to characterize density profiles far from strong ordering.

In summary, we have experimentally and theoretically
advocated the ordering mediated by a nontrivial balance
between sedimentation and long-ranged dipole-dipole inter-

particle repulsion occurring within a colloidal monolayer. The
experimental density profiles are in excellent agreement with
predictions from density functional theory and Monte Carlo
simulations. Thereby, a strikingly simple analytical solution,
based on the zero-temperature limit in the local density ap-
proach, has been derived [see Eq. (4)]. The latter accounts
for the experimentally found density profiles ranging from the
solidlike state (close to the bottom edge) to the liquidlike state
(far from the bottom edge). Computer simulations indicate
that strong crystal layering occurs, near the container’s bottom
wall, as signaled by vivid oscillations in density profiles.
The associated lattice constant is roughly dictated by �1/4,
reflecting merely a force balance between gravity and dipole-
dipole interaction. Such oscillations are smoothed out in
experiments, an effect attributed to polycrystallinity. It would
be interesting for future studies to check whether our approach
can be generalized to other soft repulsive potentials such as
a power law of the interparticle distance [36] or a screened
Coulomb potential. Overall, our findings demonstrate that the
microstructure of the sediment can be tuned and predicted by
choosing the sedimentation slope and the external magnetic
field, thus providing an efficient and convenient technique for
the fabrication of controlled ordered monolayers.

This work has been partially funded by the European Union
through the program FEDER-FSE Lorraine et Massif des
Vosges 2014-2020.
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